Building energy modeling based on data-driven techniques has been demonstrated to be effective in a variety of situations. However, the question about its limits in terms of generalization is still open. The ability of a machine-learning model to adapt to previously unseen data and function satisfactorily is known as generalization. Apart from that, while machine-learning techniques are incredibly effective, interpretability is required for a "human-in-the-loop" approach to be successful. This study develops and tests a flexible regression-based approach applied to monitored energy data on a Passive House building. The formulation employs dummy (binary) variables as a piecewise linearization method, with the procedures for producing them explicitly stated to ensure interpretability. The results are described using statistical indicators and a graphic technique that allows for comparison across levels in the building systems. Finally, suggestions are provided for further steps toward generalization in data-driven techniques for energy in buildings.

Data-Driven Building Energy Modelling – Generalisation Potential of Energy Signatures Through Interpretable Machine Learning

Manfren M.;Tronchin L.
2022-01-01

Abstract

Building energy modeling based on data-driven techniques has been demonstrated to be effective in a variety of situations. However, the question about its limits in terms of generalization is still open. The ability of a machine-learning model to adapt to previously unseen data and function satisfactorily is known as generalization. Apart from that, while machine-learning techniques are incredibly effective, interpretability is required for a "human-in-the-loop" approach to be successful. This study develops and tests a flexible regression-based approach applied to monitored energy data on a Passive House building. The formulation employs dummy (binary) variables as a piecewise linearization method, with the procedures for producing them explicitly stated to ensure interpretability. The results are described using statistical indicators and a graphic technique that allows for comparison across levels in the building systems. Finally, suggestions are provided for further steps toward generalization in data-driven techniques for energy in buildings.
2022
Building Simulation Applications
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1292061
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact