Urban Air Mobility (UAM) aircraft are highly susceptible to turbulent wind disturbances when operating near buildings in complex urban environments. Microscale wind phenomena, combined with the unconventional designs of UAM aircraft, increase the risk of performance deviation, the overall duration, and the cost of flight tests for certification. A way to overcome this would be through simulation-based flight tests. Therefore, this study simulates a UAM aircraft landing vertically behind an isolated tall building, considering four different wind scenarios: no wind, uniform wind fields at low and high spatial resolutions (assumed constant across the airframe), and non-uniform fields with spatially varying velocity profiles at individual rotor hubs. The resultant flight test data are then used to quantify the impact of microscale wind characteristics on landing performance by systematically analyzing the rotor performance, aerodynamics, control response, and trajectory deviation.

Sensitivity Analysis of Urban Air Mobility Aircraft Landing Trajectory Deviation to Microscale Wind Disturbances

Dhamodharasamy Sundarraj Nithya;G. Quaranta
2025-01-01

Abstract

Urban Air Mobility (UAM) aircraft are highly susceptible to turbulent wind disturbances when operating near buildings in complex urban environments. Microscale wind phenomena, combined with the unconventional designs of UAM aircraft, increase the risk of performance deviation, the overall duration, and the cost of flight tests for certification. A way to overcome this would be through simulation-based flight tests. Therefore, this study simulates a UAM aircraft landing vertically behind an isolated tall building, considering four different wind scenarios: no wind, uniform wind fields at low and high spatial resolutions (assumed constant across the airframe), and non-uniform fields with spatially varying velocity profiles at individual rotor hubs. The resultant flight test data are then used to quantify the impact of microscale wind characteristics on landing performance by systematically analyzing the rotor performance, aerodynamics, control response, and trajectory deviation.
2025
Vertical Flight Society 81st Annual Forum and Technology Display
File in questo prodotto:
File Dimensione Formato  
DHAMN01-25.pdf

Accesso riservato

: Publisher’s version
Dimensione 2.36 MB
Formato Adobe PDF
2.36 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1291939
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact