Ionizing radiations are responsible for bond scission, radical formation, and oxidative degradation of polymer matrices. This study focuses on the effects of gamma irradiation on solid propellant binders, targeting a comprehensive chemical and mechanical characterization of different formulations. Samples were produced either by conventional methods based on hydroxyl-terminated polybutadiene and standard polyaddition reaction using isocyanates, or innovative approaches involving UV-driven radical curing. The samples were irradiated for comparison and to study their evolution as a function of three absorbed doses (25, 45, 130 kGy) for preliminary characterization studies, using a 60-Co gamma source. Samples were irradiated in air at uncontrolled room temperature. The coupling of spectroscopy techniques (Fourier transform infrared-FTIR, Raman and electron paramagnetic resonance-EPR) and dynamic mechanical analysis (DMA) highlighted the key role of antioxidant agents in tailoring mechanical changes in the binder phase. The absence of antioxidants enhances radical formation, oxidation, and cross-linking. These processes lead to progressively increased rigidity and reduced flexibility as a function of the absorbed dose. Complex interactions between photocured components largely influence radical stabilization and material degradation. These findings provide valuable insights for designing novel radiation-resistant binders, enabling the development of solid propellants tailored for reliable, long-term permanence in space, and advancing the knowledge on the applicability of 3D-printed propellants.

Effects of Gamma Irradiation on Solid Propellant Conventional and UV-Cured Binders

Carlotti, Stefania;Maggi, Filippo
2025-01-01

Abstract

Ionizing radiations are responsible for bond scission, radical formation, and oxidative degradation of polymer matrices. This study focuses on the effects of gamma irradiation on solid propellant binders, targeting a comprehensive chemical and mechanical characterization of different formulations. Samples were produced either by conventional methods based on hydroxyl-terminated polybutadiene and standard polyaddition reaction using isocyanates, or innovative approaches involving UV-driven radical curing. The samples were irradiated for comparison and to study their evolution as a function of three absorbed doses (25, 45, 130 kGy) for preliminary characterization studies, using a 60-Co gamma source. Samples were irradiated in air at uncontrolled room temperature. The coupling of spectroscopy techniques (Fourier transform infrared-FTIR, Raman and electron paramagnetic resonance-EPR) and dynamic mechanical analysis (DMA) highlighted the key role of antioxidant agents in tailoring mechanical changes in the binder phase. The absence of antioxidants enhances radical formation, oxidation, and cross-linking. These processes lead to progressively increased rigidity and reduced flexibility as a function of the absorbed dose. Complex interactions between photocured components largely influence radical stabilization and material degradation. These findings provide valuable insights for designing novel radiation-resistant binders, enabling the development of solid propellants tailored for reliable, long-term permanence in space, and advancing the knowledge on the applicability of 3D-printed propellants.
2025
File in questo prodotto:
File Dimensione Formato  
CARLS01-25.pdf

accesso aperto

: Publisher’s version
Dimensione 4.66 MB
Formato Adobe PDF
4.66 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1291925
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact