Adsorption is one of the simplest and most cost-effective techniques for water decontamination. In this field, biochar has recently emerged as a promising alternative to traditional adsorbents, exhibiting a high surface area and affinity to metal ions, as well as often being waste-derived. Similarly, reduced graphene oxide (rGO) shows an excellent adsorption capacity. Having self-assembling properties, it has already been employed to obtain self-standing heavy-metal-adsorbing membranes. In this research, a novel self-standing membrane of biochar and rGO is presented. It was obtained through an eco-friendly method, consisting of the simple mechanical mixing of the two components, followed by vacuum filtration and mild drying. Vine pruning biochar (VBC) was employed in different rGO/biochar mass ratios, ranging from 1/1 to 1/9. The best compromise between membrane integrity and biochar content was achieved with a 4/6 proportion. This sample was also replicated using chestnut-shell-derived biochar. The composite rGO–biochar membranes were characterized through XRD, FTIR-ATR, TG-DTG, SEM-EDX, BET, ZP, particle dimension, and EPR analyses. Then, they were tested for metal ion adsorption with 10 mM Cu2+ and 100 mM Zn2+ aqueous solutions. The adsorption capacity of copper and zinc was found to be in the range of 1.51–4.03 mmolCu g−1 and 18.16–21.99 mmolZn g−1, respectively, at an acidic pH, room temperature, and contact time of 10 min. Interestingly, the composite rGO–biochar membranes exhibited a capture behavior between that of pure rGO and VBC.

Self-Standing Adsorbent Composites of Waste-Derived Biochar and Reduced Graphene Oxide for Water Decontamination

Dotti, Anna;Guagliano, Marianna;Cristiani, Cinzia;Basso Peressut, Andrea;Latorrata, Saverio
2025-01-01

Abstract

Adsorption is one of the simplest and most cost-effective techniques for water decontamination. In this field, biochar has recently emerged as a promising alternative to traditional adsorbents, exhibiting a high surface area and affinity to metal ions, as well as often being waste-derived. Similarly, reduced graphene oxide (rGO) shows an excellent adsorption capacity. Having self-assembling properties, it has already been employed to obtain self-standing heavy-metal-adsorbing membranes. In this research, a novel self-standing membrane of biochar and rGO is presented. It was obtained through an eco-friendly method, consisting of the simple mechanical mixing of the two components, followed by vacuum filtration and mild drying. Vine pruning biochar (VBC) was employed in different rGO/biochar mass ratios, ranging from 1/1 to 1/9. The best compromise between membrane integrity and biochar content was achieved with a 4/6 proportion. This sample was also replicated using chestnut-shell-derived biochar. The composite rGO–biochar membranes were characterized through XRD, FTIR-ATR, TG-DTG, SEM-EDX, BET, ZP, particle dimension, and EPR analyses. Then, they were tested for metal ion adsorption with 10 mM Cu2+ and 100 mM Zn2+ aqueous solutions. The adsorption capacity of copper and zinc was found to be in the range of 1.51–4.03 mmolCu g−1 and 18.16–21.99 mmolZn g−1, respectively, at an acidic pH, room temperature, and contact time of 10 min. Interestingly, the composite rGO–biochar membranes exhibited a capture behavior between that of pure rGO and VBC.
2025
biochar, reduced graphene oxide, freestanding membrane, self-assembling, heavy metals, adsorption, water treatment
File in questo prodotto:
File Dimensione Formato  
2025_Dotti et al, Molecules.pdf

accesso aperto

Descrizione: Manoscritto
: Publisher’s version
Dimensione 4.95 MB
Formato Adobe PDF
4.95 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1290685
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact