We prove that the critical finite-size gap scaling for frustration-free Hamiltonians is of inverse-square type. The novelty of this note is that the result is proved on general graphs and for general finite-range interactions. Therefore, the inverse-square critical gap scaling is a robust, universal property of finite-range frustration-free Hamiltonians. This places further limits on their ability to produce conformal field theories in the continuum limit. Our proof refines the divide-and-conquer strategy of Kastoryano and the second author through the refined Detectability Lemma of Gosset--Huang.

On the critical finite-size gap scaling for frustration-free Hamiltonians

Angelo Lucia
2025-01-01

Abstract

We prove that the critical finite-size gap scaling for frustration-free Hamiltonians is of inverse-square type. The novelty of this note is that the result is proved on general graphs and for general finite-range interactions. Therefore, the inverse-square critical gap scaling is a robust, universal property of finite-range frustration-free Hamiltonians. This places further limits on their ability to produce conformal field theories in the continuum limit. Our proof refines the divide-and-conquer strategy of Kastoryano and the second author through the refined Detectability Lemma of Gosset--Huang.
2025
Mathematical Physics
Mathematical Physics
Mathematics - Mathematical Physics
Quantum Physics
File in questo prodotto:
File Dimensione Formato  
lemm-lucia-2025-on-the-critical-finite-size-gap-scaling-for-frustration-free-hamiltonians.pdf

accesso aperto

: Publisher’s version
Dimensione 436.97 kB
Formato Adobe PDF
436.97 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1290651
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact