The construction industry is a major contributor to global carbon emissions, driving the need for sustainable solutions. Ultra-lightweight structures have emerged as an effective approach to reducing material usage and energy consumption. This study explores the potential of ultra-lightweight architectural systems through a learning-by-doing methodology, integrating innovative composite materials, PolRe, and knitting techniques to enhance tensegrity structures for sustainable, deployable, and efficient structural designs. Combining physical modeling, inspired by Frei Otto and Heinz Isler, with digital simulations using Kangaroo 2 and Python, this research employs form-finding and finite element analysis to validate structural performance. A 1:5 scale prototype was constructed using a manual knitting machine adapted from traditional knitting techniques. The integration of elastic meshes and rigid joints produced modular tensegrity systems that balance tension and compression, creating reversible, deployable, and material-efficient solutions. This study bridges conceptual aesthetics with structural efficiency, providing a template for sustainable, ultra-lightweight, textile-based structures.

Experimental Structural Template on Tensegrity and Textile Architecture Integrating Physical and Digital Approaches

Z. Zhang;S. Viscuso;A. Zanelli;J. Chen
2025-01-01

Abstract

The construction industry is a major contributor to global carbon emissions, driving the need for sustainable solutions. Ultra-lightweight structures have emerged as an effective approach to reducing material usage and energy consumption. This study explores the potential of ultra-lightweight architectural systems through a learning-by-doing methodology, integrating innovative composite materials, PolRe, and knitting techniques to enhance tensegrity structures for sustainable, deployable, and efficient structural designs. Combining physical modeling, inspired by Frei Otto and Heinz Isler, with digital simulations using Kangaroo 2 and Python, this research employs form-finding and finite element analysis to validate structural performance. A 1:5 scale prototype was constructed using a manual knitting machine adapted from traditional knitting techniques. The integration of elastic meshes and rigid joints produced modular tensegrity systems that balance tension and compression, creating reversible, deployable, and material-efficient solutions. This study bridges conceptual aesthetics with structural efficiency, providing a template for sustainable, ultra-lightweight, textile-based structures.
2025
File in questo prodotto:
File Dimensione Formato  
materials-18-01721-v2 (1).pdf

Accesso riservato

: Publisher’s version
Dimensione 20.99 MB
Formato Adobe PDF
20.99 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1289726
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact