Landslides are among the most dangerous natural disasters, with their unpredictability and potential for catastrophic human and economic losses exacerbated by climate change. Continuous monitoring and precise modeling of landslide-prone areas are crucial for effective risk management and mitigation. This study explores two distinct numerical simulation approaches: the mesh-based finite element model and the particle-based model. Both methods are analyzed for their ability to simulate landslide dynamics, focusing on their respective advantages in handling complex terrain, material interactions, and large deformations. A modified version of the second-order Taylor-Galerkin scheme and the depth-averaged Material Point Method are employed to model gravity-driven free surface flows, based on depth-integrated incompressible Navier-Stokes equations. The methods are rigorously tested against benchmarks and applied to a real-world scenario to assess their performance, strengths, and limitations. The results offer insights into selecting appropriate simulation techniques for landslide analysis, depending on specific modeling requirements and computational resources.

A comparative analysis of mesh-based and particle-based numerical methods for landslide run-out simulations

de Falco, Carlo;Formaggia, Luca
2025-01-01

Abstract

Landslides are among the most dangerous natural disasters, with their unpredictability and potential for catastrophic human and economic losses exacerbated by climate change. Continuous monitoring and precise modeling of landslide-prone areas are crucial for effective risk management and mitigation. This study explores two distinct numerical simulation approaches: the mesh-based finite element model and the particle-based model. Both methods are analyzed for their ability to simulate landslide dynamics, focusing on their respective advantages in handling complex terrain, material interactions, and large deformations. A modified version of the second-order Taylor-Galerkin scheme and the depth-averaged Material Point Method are employed to model gravity-driven free surface flows, based on depth-integrated incompressible Navier-Stokes equations. The methods are rigorously tested against benchmarks and applied to a real-world scenario to assess their performance, strengths, and limitations. The results offer insights into selecting appropriate simulation techniques for landslide analysis, depending on specific modeling requirements and computational resources.
2025
Semi-conservative Depth Averaged MPM, Path-conservative methods, Implicit-explicit Runge-Kutta-Chebychev scheme, Depth-averaged models, Geohazard analysis.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S004579302500101X-main.pdf

Accesso riservato

Descrizione: AAM
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 2.44 MB
Formato Adobe PDF
2.44 MB Adobe PDF   Visualizza/Apri
1-s2.0-S004579302500101X-main.pdf

Accesso riservato

: Publisher’s version
Dimensione 4 MB
Formato Adobe PDF
4 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1289410
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact