Sample efficiency in the face of computationally expensive simulations is a common concern in surrogate modeling. Current strategies to minimize the number of samples needed are not as effective in simulated environments with wide state spaces. As a response to this challenge, we propose a novel method to efficiently sample simulated deterministic environments by using policies trained by Reinforcement Learning. We provide an extensive analysis of these surrogate-building strategies with respect to Latin-Hypercube sampling or Active Learning and Kriging, cross-validating performances with all sampled datasets. The analysis shows that a mixed dataset that includes samples acquired by random agents, expert agents, and agents trained to explore the regions of maximum entropy of the state transition distribution provides the best scores through all datasets, which is crucial for a meaningful state space representation. We conclude that the proposed method improves the state-of-the-art and clears the path to enable the application of surrogate-aided Reinforcement Learning policy optimization strategies on complex simulators.

Building Surrogate Models Using Trajectories of Agents Trained by Reinforcement Learning

Restelli M.
2024-01-01

Abstract

Sample efficiency in the face of computationally expensive simulations is a common concern in surrogate modeling. Current strategies to minimize the number of samples needed are not as effective in simulated environments with wide state spaces. As a response to this challenge, we propose a novel method to efficiently sample simulated deterministic environments by using policies trained by Reinforcement Learning. We provide an extensive analysis of these surrogate-building strategies with respect to Latin-Hypercube sampling or Active Learning and Kriging, cross-validating performances with all sampled datasets. The analysis shows that a mixed dataset that includes samples acquired by random agents, expert agents, and agents trained to explore the regions of maximum entropy of the state transition distribution provides the best scores through all datasets, which is crucial for a meaningful state space representation. We conclude that the proposed method improves the state-of-the-art and clears the path to enable the application of surrogate-aided Reinforcement Learning policy optimization strategies on complex simulators.
2024
Artificial Neural Networks and Machine Learning – ICANN 2024
9783031723407
9783031723414
Reinforcement Learning
Surrogate models
Sampling
Entropy maximization
File in questo prodotto:
File Dimensione Formato  
building2024cestero.pdf

Accesso riservato

: Publisher’s version
Dimensione 17.52 MB
Formato Adobe PDF
17.52 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1288625
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact