The stability of slopes is influenced by seasonal variations in thermal, hydrological, and mechanical processes. This study investigates the role of snowmelt in triggering shallow landslides through controlled laboratory experiments simulating winter, spring, and summer conditions. Snowpack dynamics and water movement were analyzed to understand filtration, infiltration, and runoff mechanisms. The results show that during winter, snow acts as a protective layer, slowing infiltration through its insulating and loading effects. In spring, rising temperatures melt snow, increasing water infiltration and filtration, accelerating soil saturation, and triggering slope failures. Summer rainfall-induced landslides exhibit distinct mechanisms, driven by progressive saturation. The transition from winter to spring highlights a critical phase where snowmelt interacts with warmer soils, intensifying slope instability risks. Numerical simulations using HYDRUS 1D validated the experimental findings, demonstrating its utility in modeling infiltration under varying thermal gradients. This study underscores the importance of incorporating snowmelt dynamics into landslide risk assessments and early warning systems, particularly as climate change accelerates snowmelt cycles in mountainous regions. These findings provide essential insights into seasonal variations in collapse mechanisms, emphasizing the need for further research to address the increasing impact of snowmelt in shallow landslides.
Snow Melting Experimental Analysis on a Downscaled Shallow Landslide: A Focus on the Seepage Activity of the Snow–Soil System
Panzeri L.;Mondani M.;Papini M.;Longoni L.
2025-01-01
Abstract
The stability of slopes is influenced by seasonal variations in thermal, hydrological, and mechanical processes. This study investigates the role of snowmelt in triggering shallow landslides through controlled laboratory experiments simulating winter, spring, and summer conditions. Snowpack dynamics and water movement were analyzed to understand filtration, infiltration, and runoff mechanisms. The results show that during winter, snow acts as a protective layer, slowing infiltration through its insulating and loading effects. In spring, rising temperatures melt snow, increasing water infiltration and filtration, accelerating soil saturation, and triggering slope failures. Summer rainfall-induced landslides exhibit distinct mechanisms, driven by progressive saturation. The transition from winter to spring highlights a critical phase where snowmelt interacts with warmer soils, intensifying slope instability risks. Numerical simulations using HYDRUS 1D validated the experimental findings, demonstrating its utility in modeling infiltration under varying thermal gradients. This study underscores the importance of incorporating snowmelt dynamics into landslide risk assessments and early warning systems, particularly as climate change accelerates snowmelt cycles in mountainous regions. These findings provide essential insights into seasonal variations in collapse mechanisms, emphasizing the need for further research to address the increasing impact of snowmelt in shallow landslides.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


