Supercritical CO2 is recognized as a promising working fluid for next-generation of high temperature power cycles. Nevertheless, the use of CO2 mixtures with heavier dopants is emerging as a promising alternative to supercritical CO2 cycles in the recent years for air-cooled systems in hot environments. Accordingly, this work presents an experimental campaign to assess the thermodynamic behaviour of the CO2+SiCl4 mixture to be used as working fluid for high-temperature applications, conducted in the laboratories of CTP Mines Paris PSL. At first, bubble conditions of the mixture are measured in a variable volume cell (PVT technique), then liquid densities are measured with a vibrating tube densimeter, for molar composition in the range between 70 % and 90 % of CO2. The Peng Robinson EoS was fine-tuned on the bubble points obtained, resulting in a satisfactory accuracy level. Finally, a non-conventional methodology has been developed to measure bubble points with the vibrating tube densimeter, whose results are consistent with the VLE data obtained with the standard PVT technique. Thermodynamic analysis in next-generation concentrated solar power plant, at 700 °C turbine inlet, confirms the mixture overcomes 50 % thermal efficiency, providing +4.2 % net electrical output over pure supercritical CO2 at equal thermal power from the solar field.

Experimental investigation of the CO2+SiCl4 mixture as innovative working fluid for power cycles: Bubble points and liquid density measurements

Morosini, E.;Manzolini, G.
2024-01-01

Abstract

Supercritical CO2 is recognized as a promising working fluid for next-generation of high temperature power cycles. Nevertheless, the use of CO2 mixtures with heavier dopants is emerging as a promising alternative to supercritical CO2 cycles in the recent years for air-cooled systems in hot environments. Accordingly, this work presents an experimental campaign to assess the thermodynamic behaviour of the CO2+SiCl4 mixture to be used as working fluid for high-temperature applications, conducted in the laboratories of CTP Mines Paris PSL. At first, bubble conditions of the mixture are measured in a variable volume cell (PVT technique), then liquid densities are measured with a vibrating tube densimeter, for molar composition in the range between 70 % and 90 % of CO2. The Peng Robinson EoS was fine-tuned on the bubble points obtained, resulting in a satisfactory accuracy level. Finally, a non-conventional methodology has been developed to measure bubble points with the vibrating tube densimeter, whose results are consistent with the VLE data obtained with the standard PVT technique. Thermodynamic analysis in next-generation concentrated solar power plant, at 700 °C turbine inlet, confirms the mixture overcomes 50 % thermal efficiency, providing +4.2 % net electrical output over pure supercritical CO2 at equal thermal power from the solar field.
2024
CO
2
mixtures
CSP
Liquid density
sCO
2
Vapour-liquid equilibrium
Working fluids
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0360544224009708-main.pdf

accesso aperto

Dimensione 6.13 MB
Formato Adobe PDF
6.13 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1288321
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact