Optimizing structural openings in vibro-acoustic systems is essential for balancing functional needs with acoustic performance in various engineering applications. This paper presents an efficient optimization approach for designing openings in plate structures within vibro-acoustic systems, aimed at enhancing acoustic performance while maintaining structural integrity. A genetic algorithm framework is developed to determine the optimal shapes and locations of openings simultaneously, utilizing an analytical model based on hyperbolic and trigonometric admissible functions within a master–slave software architecture. The proposed method accommodates a variety of opening requirements for different systems and employs a cost function that evaluates both the average and peaks of sound power responses to identify the designs with the highest fitness. This results in significant reductions in sound power levels compared to median and worst-case designs. Additionally, the method analyzes how variations in opening locations, numbers, and shapes impact acoustic performance, providing guidance for opening designs that avoid undesired acoustic outcomes and improve noise barrier performance in vibro-acoustic systems.

Optimizing design of openings in vibrating plates for enhanced vibro-acoustic performance using a genetic algorithm approach

Maamoun, Khaled Said Ahmed;Karimi, Hamid Reza
2025-01-01

Abstract

Optimizing structural openings in vibro-acoustic systems is essential for balancing functional needs with acoustic performance in various engineering applications. This paper presents an efficient optimization approach for designing openings in plate structures within vibro-acoustic systems, aimed at enhancing acoustic performance while maintaining structural integrity. A genetic algorithm framework is developed to determine the optimal shapes and locations of openings simultaneously, utilizing an analytical model based on hyperbolic and trigonometric admissible functions within a master–slave software architecture. The proposed method accommodates a variety of opening requirements for different systems and employs a cost function that evaluates both the average and peaks of sound power responses to identify the designs with the highest fitness. This results in significant reductions in sound power levels compared to median and worst-case designs. Additionally, the method analyzes how variations in opening locations, numbers, and shapes impact acoustic performance, providing guidance for opening designs that avoid undesired acoustic outcomes and improve noise barrier performance in vibro-acoustic systems.
2025
Genetic algorithm optimization; Sound power reduction; Structural-acoustic coupling; Vibrating plates with openings; Vibro-acoustic system enhancement;
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1288215
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact