The e-grocery sector has experienced a significant boost since the COVID-19 pandemic, dramatically changing consumer buying behaviours. As demand for faster and more efficient delivery options grows, e-grocery retailers face increasing pressure to optimize home delivery operations. Collaborations with third-party logistics providers (3PLs), although still overlooked, have emerged as promising, offering operational flexibility and environmental benefits. This work introduces an optimization model that supports the design of an on-demand delivery fleet conjunctly with delivery routings and schedules, while considering both cost and environmental impact. To this aim, a vehicle routing problem with time windows (VRPTW) is extended to incorporate on-demand fleet design and three different objective functions embodying a cost-efficient, an environmentally-effective and a cost-environmental balanced perspective respectively. Numerical experiments based on an Italian case study show that prioritizing environmental objectives reduces emissions by over 90%, with marginal increases in annual costs. Besides, on-demand vehicles enable flexibility that facilitates the adoption of sustainable delivery options without requiring challenging investments such as delivery fleet. Several contributions are provided: insights into using on-demand vehicles are proposed; a mathematical model jointly optimizing fleet design and delivery routing and scheduling, while considering both costs and environmental objectives, is developed and its practical application is demonstrated using real-world data. The findings highlight the significant impact of environmental considerations on fleet composition and operational efficiency, offering actionable strategies for e-retailers to reduce emissions while maintaining service quality.

Sustainable e-grocery home delivery: An optimization model considering on-demand vehicles

Tudisco V.;Perotti S.;
2025-01-01

Abstract

The e-grocery sector has experienced a significant boost since the COVID-19 pandemic, dramatically changing consumer buying behaviours. As demand for faster and more efficient delivery options grows, e-grocery retailers face increasing pressure to optimize home delivery operations. Collaborations with third-party logistics providers (3PLs), although still overlooked, have emerged as promising, offering operational flexibility and environmental benefits. This work introduces an optimization model that supports the design of an on-demand delivery fleet conjunctly with delivery routings and schedules, while considering both cost and environmental impact. To this aim, a vehicle routing problem with time windows (VRPTW) is extended to incorporate on-demand fleet design and three different objective functions embodying a cost-efficient, an environmentally-effective and a cost-environmental balanced perspective respectively. Numerical experiments based on an Italian case study show that prioritizing environmental objectives reduces emissions by over 90%, with marginal increases in annual costs. Besides, on-demand vehicles enable flexibility that facilitates the adoption of sustainable delivery options without requiring challenging investments such as delivery fleet. Several contributions are provided: insights into using on-demand vehicles are proposed; a mathematical model jointly optimizing fleet design and delivery routing and scheduling, while considering both costs and environmental objectives, is developed and its practical application is demonstrated using real-world data. The findings highlight the significant impact of environmental considerations on fleet composition and operational efficiency, offering actionable strategies for e-retailers to reduce emissions while maintaining service quality.
2025
E-grocery
Home delivery
Last-mile delivery
On-demand fleet
On-demand vehicle
Sustainable logistics
File in questo prodotto:
File Dimensione Formato  
2025_TUDUSCO_PEROTTI_EKREN_AKTAS_ Sustainable e-grocery home delivery.pdf

accesso aperto

: Publisher’s version
Dimensione 5.09 MB
Formato Adobe PDF
5.09 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1288163
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact