Triply periodic minimal surfaces (TPMSs) have been extensively studied in many fields of engineering, including bone tissue scaffolds. Recent advancements in manufacturing have enabled the three-dimensional printing of ceramic porous architectures; however, their intrinsic brittleness limits its practical applications. It has been observed that the ossicles of the knobby starfish exhibit a mineralized TPMS structure with lattice distortions (i.e., dislocations), which effectively deviate the crack propagation and enhance the fracture energy. In this article, the aforementioned toughening mechanism has been introduced in a TPMS architecture. We employed finite element models to analyze the effective mechanical properties of the structures under compression, both in the elastic and post-elastic regimes. Our analysis reveals that the introduction of the dislocation induces variations in both elastic and fracture properties of the structures. With particular reference to the fracture behavior, a suitable oriented edge dislocation is able to alter the crack nucleation and propagation, resulting in a tougher structure. Both the elastic and fracture phenomena can be enhanced or reduced by changing the dislocation density.
Nature-inspired orientation-dependent toughening mechanism for TPMS ceramic architectures
D'Andrea L.;Vena P.
2025-01-01
Abstract
Triply periodic minimal surfaces (TPMSs) have been extensively studied in many fields of engineering, including bone tissue scaffolds. Recent advancements in manufacturing have enabled the three-dimensional printing of ceramic porous architectures; however, their intrinsic brittleness limits its practical applications. It has been observed that the ossicles of the knobby starfish exhibit a mineralized TPMS structure with lattice distortions (i.e., dislocations), which effectively deviate the crack propagation and enhance the fracture energy. In this article, the aforementioned toughening mechanism has been introduced in a TPMS architecture. We employed finite element models to analyze the effective mechanical properties of the structures under compression, both in the elastic and post-elastic regimes. Our analysis reveals that the introduction of the dislocation induces variations in both elastic and fracture properties of the structures. With particular reference to the fracture behavior, a suitable oriented edge dislocation is able to alter the crack nucleation and propagation, resulting in a tougher structure. Both the elastic and fracture phenomena can be enhanced or reduced by changing the dislocation density.File | Dimensione | Formato | |
---|---|---|---|
s43577-024-00831-5 (1).pdf
Accesso riservato
:
Publisher’s version
Dimensione
3.84 MB
Formato
Adobe PDF
|
3.84 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.