Van der Waals heterostructures based on transition metal dichalcogenides (TMDs) have emerged as excellent candidates for next-generation optoelectronics and valleytronics, due to their fascinating physical properties. The understanding and active control of the relaxation dynamics of heterostructures play a crucial role in device design and optimization. Here, we investigate the back-gate modulation of exciton dynamics in a WS2/WSe2 heterostructure by combining time-resolved photoluminescence (TRPL) and transient absorption spectroscopy (TAS) at cryogenic temperatures. We find that the non-radiative relaxation lifetimes of photocarriers in heterostructures can be electrically controlled for samples with different twist-angles, whereas such lifetime tuning is not present in standalone monolayers. We attribute such an observation to doping-controlled competition between interlayer and intralayer recombination pathways in high-quality WS2/WSe2 samples. The simultaneous measurement of TRPL and TAS lifetimes within the same sample provides additional insight into the influence of coexisting excitons and background carriers on the photo-response, and points to the potential of tailoring light-matter interactions in TMD heterostructures.

Electrically tunable non-radiative lifetime in WS2/WSe2 heterostructures

Cerullo, Giulio;
2024-01-01

Abstract

Van der Waals heterostructures based on transition metal dichalcogenides (TMDs) have emerged as excellent candidates for next-generation optoelectronics and valleytronics, due to their fascinating physical properties. The understanding and active control of the relaxation dynamics of heterostructures play a crucial role in device design and optimization. Here, we investigate the back-gate modulation of exciton dynamics in a WS2/WSe2 heterostructure by combining time-resolved photoluminescence (TRPL) and transient absorption spectroscopy (TAS) at cryogenic temperatures. We find that the non-radiative relaxation lifetimes of photocarriers in heterostructures can be electrically controlled for samples with different twist-angles, whereas such lifetime tuning is not present in standalone monolayers. We attribute such an observation to doping-controlled competition between interlayer and intralayer recombination pathways in high-quality WS2/WSe2 samples. The simultaneous measurement of TRPL and TAS lifetimes within the same sample provides additional insight into the influence of coexisting excitons and background carriers on the photo-response, and points to the potential of tailoring light-matter interactions in TMD heterostructures.
2024
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1287946
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact