Molecular aggregation is a powerful tool for tuning advanced materials’ photophysical and electronic properties. Here we present a novel potential for the aqueous-solvated aggregated state of boron dipyrromethene (BODIPY) to facilitate phototransformations otherwise achievable only under harsh chemical conditions. We show that the photoinduced symmetry-breaking charge separation state can itself initiate catalyst-free redox chemistry, leading to selective α-C(sp3)-H bond activation/Cspjavax.xml.bind.JAXBElement@50fe03b6-Cspjavax.xml.bind.JAXBElement@277431f6 coupling on the BODIPY backbone. The photoproduction progress was tracked by monitoring the evolution of the strong Stokes-shifted near-infrared emission, resulting from selective self-assembly of the terminal heterodimeric photoproduct into well-ordered J-aggregates, as revealed by X-ray structural analysis. These findings provide a facile and green route to further explore the promising frontier of packing-triggered selective photoconversions via supramolecular engineering.

Aggregation-Driven Photoinduced α-C(sp3)–H Bond Hydroxylation/C(sp3)–C(sp3) Coupling of Boron Dipyrromethene Dye in Water Reported by Near-Infrared Emission

Maiuri, Margherita;Cerullo, Giulio;
2024-01-01

Abstract

Molecular aggregation is a powerful tool for tuning advanced materials’ photophysical and electronic properties. Here we present a novel potential for the aqueous-solvated aggregated state of boron dipyrromethene (BODIPY) to facilitate phototransformations otherwise achievable only under harsh chemical conditions. We show that the photoinduced symmetry-breaking charge separation state can itself initiate catalyst-free redox chemistry, leading to selective α-C(sp3)-H bond activation/Cspjavax.xml.bind.JAXBElement@50fe03b6-Cspjavax.xml.bind.JAXBElement@277431f6 coupling on the BODIPY backbone. The photoproduction progress was tracked by monitoring the evolution of the strong Stokes-shifted near-infrared emission, resulting from selective self-assembly of the terminal heterodimeric photoproduct into well-ordered J-aggregates, as revealed by X-ray structural analysis. These findings provide a facile and green route to further explore the promising frontier of packing-triggered selective photoconversions via supramolecular engineering.
2024
File in questo prodotto:
File Dimensione Formato  
shahu-et-al-2024-aggregation-driven-photoinduced-α-c(sp3)-h-bond-hydroxylation-c(sp3)-c(sp3)-coupling-of-boron.pdf

accesso aperto

: Publisher’s version
Dimensione 3.98 MB
Formato Adobe PDF
3.98 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1287945
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact