Many applications of ultrafast and nonlinear optical microscopy require the measurement of small differential signals over large fields-of-view. Widefield configurations drastically reduce the acquisition time; however, they suffer from the low frame rates of two-dimensional detectors, which limit the modulation frequency, making the measurement sensitive to excess laser noise. Here we introduce a self-referenced detection configuration for widefield differential imaging. Employing regions of the field of view with no differential signal as references, we cancel probe fluctuations and increase the signal-to-noise ratio by an order of magnitude reaching noise levels only a few percent above the shot noise limit. We anticipate broad applicability of our method to transient absorption, stimulated Raman scattering and photothermal-infrared microscopies.

Self-referencing for quasi shot-noise-limited widefield transient microscopy

Hörmann, Martin;Visentin, Federico;Cerullo, Giulio;
2024-01-01

Abstract

Many applications of ultrafast and nonlinear optical microscopy require the measurement of small differential signals over large fields-of-view. Widefield configurations drastically reduce the acquisition time; however, they suffer from the low frame rates of two-dimensional detectors, which limit the modulation frequency, making the measurement sensitive to excess laser noise. Here we introduce a self-referenced detection configuration for widefield differential imaging. Employing regions of the field of view with no differential signal as references, we cancel probe fluctuations and increase the signal-to-noise ratio by an order of magnitude reaching noise levels only a few percent above the shot noise limit. We anticipate broad applicability of our method to transient absorption, stimulated Raman scattering and photothermal-infrared microscopies.
2024
File in questo prodotto:
File Dimensione Formato  
oe-32-12-21230.pdf

accesso aperto

: Publisher’s version
Dimensione 1.98 MB
Formato Adobe PDF
1.98 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1287934
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact