The accurate assessment of anomalous head posture (AHP) is crucial for diagnosing, treating, and monitoring postural changes in individuals with ocular impairments. This study evaluated the accuracy of a digital goniometer and an iOS-based application by comparing their measurements to a gold-standard motion capture (MoCap) system. Additionally, it assessed cervical range of motion (ROM) limitations in children with AHP versus healthy controls. Fifteen pediatric patients with ocular-origin AHP and 20 age-matched controls participated. Head rotation and inclination were measured using a goniometer, the iOS app, and MoCap under static and dynamic conditions. Pearson's correlation coefficient (PCC), root mean square error (RMSE), and Bland-Altman plots assessed inter-system agreement, while MoCap analyzed cervical ROM. The results showed strong agreement between the ophthalmological tools and MoCap for head rotation (PCC = 0.86, RMSE = 3.43 degrees) and inclination (PCC = 0.82, RMSE = 5 degrees), with no significant inter-system differences (p > 0.05). AHP patients exhibited reduced head flexion (p < 0.05), suggesting long-term postural adaptations. Digital goniometers and smartphone applications provide accurate, cost-effective AHP assessment alternatives, particularly in resource-limited settings. Future research should expand cohorts and integrate multidisciplinary approaches to refine assessment and treatment strategies.
Accuracy of Measurement Tools for Ocular-Origin Anomalous Head Posture and the Cervical Range of Motion Kinematics in Children with an Anomalous Head Position
Cerfoglio, Serena;Donno, Lucia;Aili, Fabiana;Galli, Manuela;Cimolin, Veronica
2025-01-01
Abstract
The accurate assessment of anomalous head posture (AHP) is crucial for diagnosing, treating, and monitoring postural changes in individuals with ocular impairments. This study evaluated the accuracy of a digital goniometer and an iOS-based application by comparing their measurements to a gold-standard motion capture (MoCap) system. Additionally, it assessed cervical range of motion (ROM) limitations in children with AHP versus healthy controls. Fifteen pediatric patients with ocular-origin AHP and 20 age-matched controls participated. Head rotation and inclination were measured using a goniometer, the iOS app, and MoCap under static and dynamic conditions. Pearson's correlation coefficient (PCC), root mean square error (RMSE), and Bland-Altman plots assessed inter-system agreement, while MoCap analyzed cervical ROM. The results showed strong agreement between the ophthalmological tools and MoCap for head rotation (PCC = 0.86, RMSE = 3.43 degrees) and inclination (PCC = 0.82, RMSE = 5 degrees), with no significant inter-system differences (p > 0.05). AHP patients exhibited reduced head flexion (p < 0.05), suggesting long-term postural adaptations. Digital goniometers and smartphone applications provide accurate, cost-effective AHP assessment alternatives, particularly in resource-limited settings. Future research should expand cohorts and integrate multidisciplinary approaches to refine assessment and treatment strategies.| File | Dimensione | Formato | |
|---|---|---|---|
|
Cerfoglio_ApplSci_2025.pdf
Accesso riservato
:
Publisher’s version
Dimensione
1.49 MB
Formato
Adobe PDF
|
1.49 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


