Machine learning (ML) techniques are crucial for improving diagnostic accuracy in psychiatry using neuroimaging-based biomarkers. Deep learning models like Kolmogorov Arnold Networks (KANs) are particularly promising in this context but struggle with high-dimensional datasets. We propose the Ensemble-KAN (E-KAN) method to overcome these limitations, integrating multiple base learners. Our novel approach aims to advance classification especially when multiple sources of data are available. The E-KAN was tested against traditional ML models in discriminating recent-onset psychosis (ROP) or depression (ROD) from healthy controls using multimodal environmental and neuroimaging data and it underwent a rigorous ablation study to test its effectiveness. Results demonstrate enhanced performance over traditional ML models, highlighting the efficacy of E-KAN models in psychiatric diagnostics. Specifically, our E-KAN achieved an accuracy of 72.5%, outperforming single-KAN models and traditional ML algorithms. This study underscores the potential of E-KAN models in advancing psychiatric research and personalized medicine through improved diagnostic capabilities. The code is available at https://github.com/brainpolislab/E-KAN.

Ensemble-KAN: Leveraging Kolmogorov Arnold Networks to Discriminate Individuals with Psychiatric Disorders from Controls

De Franceschi, Gianluca;Sampaio, Inês Won;Maggioni, Eleonora
2025-01-01

Abstract

Machine learning (ML) techniques are crucial for improving diagnostic accuracy in psychiatry using neuroimaging-based biomarkers. Deep learning models like Kolmogorov Arnold Networks (KANs) are particularly promising in this context but struggle with high-dimensional datasets. We propose the Ensemble-KAN (E-KAN) method to overcome these limitations, integrating multiple base learners. Our novel approach aims to advance classification especially when multiple sources of data are available. The E-KAN was tested against traditional ML models in discriminating recent-onset psychosis (ROP) or depression (ROD) from healthy controls using multimodal environmental and neuroimaging data and it underwent a rigorous ablation study to test its effectiveness. Results demonstrate enhanced performance over traditional ML models, highlighting the efficacy of E-KAN models in psychiatric diagnostics. Specifically, our E-KAN achieved an accuracy of 72.5%, outperforming single-KAN models and traditional ML algorithms. This study underscores the potential of E-KAN models in advancing psychiatric research and personalized medicine through improved diagnostic capabilities. The code is available at https://github.com/brainpolislab/E-KAN.
2025
Applications of Medical Artificial Intelligence. AMAI 2024
9783031820069
9783031820076
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1287797
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact