This scoping review paper redefines the Artificial Intelligence-based Internet of Things (AIoT) driven Human Activity Recognition (HAR) field by systematically extrapolating from various application domains to deduce potential techniques and algorithms. We distill a general model with adaptive learning and optimization mechanisms by conducting a detailed analysis of human activity types and utilizing contact or non-contact devices. It presents various system integration mathematical paradigms driven by multimodal data fusion, covering predictions of complex behaviors and redefining valuable methods, devices, and systems for HAR. Additionally, this paper establishes benchmarks for behavior recognition across different application requirements, from simple localized actions to group activities. It summarizes open research directions, including data diversity and volume, computational limitations, interoperability, real-time recognition, data security, and privacy concerns. Finally, we aim to serve as a comprehensive and foundational resource for researchers delving into the complex and burgeoning realm of AIoT-enhanced HAR, providing insights and guidance for future innovations and developments.

A Review of AIoT-based Human Activity Recognition: From Application to Technique

Aliverti A.
2024-01-01

Abstract

This scoping review paper redefines the Artificial Intelligence-based Internet of Things (AIoT) driven Human Activity Recognition (HAR) field by systematically extrapolating from various application domains to deduce potential techniques and algorithms. We distill a general model with adaptive learning and optimization mechanisms by conducting a detailed analysis of human activity types and utilizing contact or non-contact devices. It presents various system integration mathematical paradigms driven by multimodal data fusion, covering predictions of complex behaviors and redefining valuable methods, devices, and systems for HAR. Additionally, this paper establishes benchmarks for behavior recognition across different application requirements, from simple localized actions to group activities. It summarizes open research directions, including data diversity and volume, computational limitations, interoperability, real-time recognition, data security, and privacy concerns. Finally, we aim to serve as a comprehensive and foundational resource for researchers delving into the complex and burgeoning realm of AIoT-enhanced HAR, providing insights and guidance for future innovations and developments.
2024
Artificial intelligence
Artificial Intelligence-based Internet of Things (AIoT)
Bioinformatics
Data models
Human activity recognition
Human Activity Recognition
Internet of Things
Medical services
Multimodal Data Fusion
Sensors
Sensors Fusion
File in questo prodotto:
File Dimensione Formato  
A_Review_of_AIoT-based_Human_Activity_Recognition_From_Application_to_Technique.pdf

Accesso riservato

: Publisher’s version
Dimensione 5.3 MB
Formato Adobe PDF
5.3 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1287740
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact