The evaluation of algal bloom forecasting models typically relies on error metrics that quantify the forecasting performance over the whole test set as a single number. Furthermore, the comparison with simple baseline methods is often omitted. To address this, we introduce a novel framework for Model performance Analysis and Visualization of time series forecasting (MAVts). MAVts incorporates novel algorithms for the automatic identification and visualization of time series periods of interest where the forecasting models are evaluated and compared with simple baseline methods. The application of MAVts on evaluating algal bloom forecasting models composed of sophisticated machine learning (ML) methods, reveals that in 85% of experiments a single error metric is not enough and only in 12.5% of experiments a ML model outperforms all baselines on all metrics and periods of interest. Thus, MAVts emerges as a valuable tool for analyzing and comparing ML models, advancing environmental management and protection.

Enhancing algal bloom forecasting: A novel framework for machine learning performance evaluation during periods of special temporal patterns

Xia W.;
2024-01-01

Abstract

The evaluation of algal bloom forecasting models typically relies on error metrics that quantify the forecasting performance over the whole test set as a single number. Furthermore, the comparison with simple baseline methods is often omitted. To address this, we introduce a novel framework for Model performance Analysis and Visualization of time series forecasting (MAVts). MAVts incorporates novel algorithms for the automatic identification and visualization of time series periods of interest where the forecasting models are evaluated and compared with simple baseline methods. The application of MAVts on evaluating algal bloom forecasting models composed of sophisticated machine learning (ML) methods, reveals that in 85% of experiments a single error metric is not enough and only in 12.5% of experiments a ML model outperforms all baselines on all metrics and periods of interest. Thus, MAVts emerges as a valuable tool for analyzing and comparing ML models, advancing environmental management and protection.
2024
Algal bloom
Machine learning
Pattern identification
Performance evaluation
Time series forecasting
Tropical reservoir
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1287714
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact