Pd-exchanged chabazite (Pd-CHA) catalysts show NO adsorption and desorption features which comply well with the requirements for low-T passive NOx adsorber (PNA) applications. An earlier work based on transient adsorption tests investigated the NO storage pathway on Pd-CHA, a still debated topic in the literature. Such research highlighted a Pd-redox mechanism (Pd2+ <-> Pd+) underlying the NO storage chemistry over these systems. CO and NO were capable of reducing Pd2+ at low temperatures, and the newly formed Pd+ acted as the main NO storage site. Increasing temperatures activated a Pd-oxidation process, which reduced the fraction of Pd+ sites, and consequently the NO storage, but was inhibited by H2O. Herein we challenge quantitatively such a scheme relying on transient kinetic analysis. We show that a simple redox kinetic model of NO + CO storage on Pd-CHA, based on the above, reproduces the main features of the species evolution and of the NO storage observed under variable operating conditions over Pd-CHA samples with two Pd-loadings, thus lending support to the proposed Pd-redox chemistry.

A simple redox model of low-T NO + CO adsorption onto Pd-CHA as effective Passive NOx Adsorbers

Iacobone, Umberto;Gjetja, Andrea;Usberti, Nicola;Nova, Isabella;Tronconi, Enrico;Villamaina, Roberta;Ruggeri, Maria Pia;
2025-01-01

Abstract

Pd-exchanged chabazite (Pd-CHA) catalysts show NO adsorption and desorption features which comply well with the requirements for low-T passive NOx adsorber (PNA) applications. An earlier work based on transient adsorption tests investigated the NO storage pathway on Pd-CHA, a still debated topic in the literature. Such research highlighted a Pd-redox mechanism (Pd2+ <-> Pd+) underlying the NO storage chemistry over these systems. CO and NO were capable of reducing Pd2+ at low temperatures, and the newly formed Pd+ acted as the main NO storage site. Increasing temperatures activated a Pd-oxidation process, which reduced the fraction of Pd+ sites, and consequently the NO storage, but was inhibited by H2O. Herein we challenge quantitatively such a scheme relying on transient kinetic analysis. We show that a simple redox kinetic model of NO + CO storage on Pd-CHA, based on the above, reproduces the main features of the species evolution and of the NO storage observed under variable operating conditions over Pd-CHA samples with two Pd-loadings, thus lending support to the proposed Pd-redox chemistry.
2025
File in questo prodotto:
File Dimensione Formato  
2025 Iacobone RCE.pdf

Accesso riservato

: Publisher’s version
Dimensione 2.73 MB
Formato Adobe PDF
2.73 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1287624
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 1
social impact