A fault-tolerant control approach is proposed, for a pumping airborne wind energy system (AWES) comprising a tethered fixed-wing aircraft with integrated propellers for vertical take-off and landing (VTOL). First, the flight control design for the traction phase of the system, when the tethered aircraft has to fly in loops using the rudder, is presented. Then, the presence of the propellers, that are normally not used in the traction phase, is exploited to obtain a fault tolerant controller in case of rudder malfunctioning. The approach detects a possible discrete control surface fault and compensates for the loss in actuation by using the VTOL system. A sophisticated model of the system is used to analyse the performance of the proposed technique. The main finding is that the approach is able to handle abrupt rudder faults with high tolerance.

Fault Tolerant Flight Control for the Traction Phase of Pumping Airborne Wind Energy Systems

Mohammed, Tareg;Fagiano, Lorenzo
2024-01-01

Abstract

A fault-tolerant control approach is proposed, for a pumping airborne wind energy system (AWES) comprising a tethered fixed-wing aircraft with integrated propellers for vertical take-off and landing (VTOL). First, the flight control design for the traction phase of the system, when the tethered aircraft has to fly in loops using the rudder, is presented. Then, the presence of the propellers, that are normally not used in the traction phase, is exploited to obtain a fault tolerant controller in case of rudder malfunctioning. The approach detects a possible discrete control surface fault and compensates for the loss in actuation by using the VTOL system. A sophisticated model of the system is used to analyse the performance of the proposed technique. The main finding is that the approach is able to handle abrupt rudder faults with high tolerance.
2024
Airborne wind energy
fault-tolerant control
flight control
high-altitude wind
nonlinear control
File in questo prodotto:
File Dimensione Formato  
main.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 5.73 MB
Formato Adobe PDF
5.73 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1287524
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact