We consider a Latent Bandit problem where the latent state keeps changing in time according to an underlying Markov chain, and every state is represented by a specific Bandit instance. At each step, the agent chooses an arm and observes a random reward but is unaware of which MAB he is currently pulling. As typical in Latent Bandits, we assume to know the reward distribution of the arms of all the Bandit instances. Within this setting, our goal is to learn the transition matrix determined by the Markov process. We propose a technique to tackle this estimation problem that results in solving a least-square problem obtained by exploiting the knowledge of the reward distributions and the properties of Markov chains. We prove the consistency of the estimation procedure, and we make a theoretical comparison with standard Spectral Decomposition techniques. We then discuss the dependency of the problem on the number of arms and present an offline method that chooses the best subset of possible arms that can be used for the estimation of the transition model. We ultimately introduce the SL-EC algorithm based on an Explore then Commit strategy that uses the proposed approach to estimate the transition model during the exploration phase. This algorithm achieves a regret of the order O(T^{2/3}) when compared against an oracle that builds a belief representation of the current state using the knowledge of both the observation and transition model and optimizes the expected instantaneous reward at each step. Finally, we illustrate the effectiveness of the approach and compare it with state-of-the-art algorithms for non-stationary bandits and with a modified technique based on spectral decomposition.
Switching Latent Bandits
Russo A.;Metelli A. M.;Restelli M.
2024-01-01
Abstract
We consider a Latent Bandit problem where the latent state keeps changing in time according to an underlying Markov chain, and every state is represented by a specific Bandit instance. At each step, the agent chooses an arm and observes a random reward but is unaware of which MAB he is currently pulling. As typical in Latent Bandits, we assume to know the reward distribution of the arms of all the Bandit instances. Within this setting, our goal is to learn the transition matrix determined by the Markov process. We propose a technique to tackle this estimation problem that results in solving a least-square problem obtained by exploiting the knowledge of the reward distributions and the properties of Markov chains. We prove the consistency of the estimation procedure, and we make a theoretical comparison with standard Spectral Decomposition techniques. We then discuss the dependency of the problem on the number of arms and present an offline method that chooses the best subset of possible arms that can be used for the estimation of the transition model. We ultimately introduce the SL-EC algorithm based on an Explore then Commit strategy that uses the proposed approach to estimate the transition model during the exploration phase. This algorithm achieves a regret of the order O(T^{2/3}) when compared against an oracle that builds a belief representation of the current state using the knowledge of both the observation and transition model and optimizes the expected instantaneous reward at each step. Finally, we illustrate the effectiveness of the approach and compare it with state-of-the-art algorithms for non-stationary bandits and with a modified technique based on spectral decomposition.File | Dimensione | Formato | |
---|---|---|---|
2315_Switching_Latent_Bandits.pdf
accesso aperto
:
Publisher’s version
Dimensione
917.74 kB
Formato
Adobe PDF
|
917.74 kB | Adobe PDF | Visualizza/Apri |
2315_Switching_Latent_Bandits_Supplementary Material.pdf
accesso aperto
Descrizione: Appendix
:
Publisher’s version
Dimensione
1.37 MB
Formato
Adobe PDF
|
1.37 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.