The surface detector array of the Pierre Auger Observatory, consisting of 1660 water Cherenkov tanks, has been in operation for nearly 20 years. During this long period of data acquisition, ageing effects in the detector response have been observed. The temporal evolution of the signals recorded by the surface detector is mostly compensated by continuous calibration with atmospheric muons; however, effects persist in the signal rise time and in high-level data analysis using neural networks. We have implemented a detailed description of the time evolution of the detector response and of the uptimes of individual stations in GEANT4-based detector simulations. These new simulations reproduce the observed time dependencies in the data. Using air-shower simulations that take into account the evolution of individual stations, we show that the reconstructed energy is stable at the sub-percent level, and its resolution is affected by less than 5% in 15 years. For a few specific stations, the collected light produced by muons has decreased to the point where it is difficult to distinguish it from the electromagnetic background in the calibration histograms. The upgrade of the Observatory with scintillator detectors mitigates this problem: by requiring a coincidence between the water-Cherenkov and scintillator detectors, we can enhance the muon relative contribution to the calibration histogram. We present the impact and performance of this coincidence calibration method.

The Time Evolution of the Surface Detector of the Pierre Auger Observatory

Consolati G.;
2024-01-01

Abstract

The surface detector array of the Pierre Auger Observatory, consisting of 1660 water Cherenkov tanks, has been in operation for nearly 20 years. During this long period of data acquisition, ageing effects in the detector response have been observed. The temporal evolution of the signals recorded by the surface detector is mostly compensated by continuous calibration with atmospheric muons; however, effects persist in the signal rise time and in high-level data analysis using neural networks. We have implemented a detailed description of the time evolution of the detector response and of the uptimes of individual stations in GEANT4-based detector simulations. These new simulations reproduce the observed time dependencies in the data. Using air-shower simulations that take into account the evolution of individual stations, we show that the reconstructed energy is stable at the sub-percent level, and its resolution is affected by less than 5% in 15 years. For a few specific stations, the collected light produced by muons has decreased to the point where it is difficult to distinguish it from the electromagnetic background in the calibration histograms. The upgrade of the Observatory with scintillator detectors mitigates this problem: by requiring a coincidence between the water-Cherenkov and scintillator detectors, we can enhance the muon relative contribution to the calibration histogram. We present the impact and performance of this coincidence calibration method.
2024
38th International Cosmic Ray Conference, ICRC 2023
File in questo prodotto:
File Dimensione Formato  
ICRC2023_266.pdf

accesso aperto

: Publisher’s version
Dimensione 735.97 kB
Formato Adobe PDF
735.97 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1287183
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact