We investigate the Presburger liveness problems for nondeterministic reversal-bounded multicounter machines with a free counter (NCMFs). We show the following: – The ∃-Presburger-i.o. problem and the ∃-Presburger-eventual problem are both decidable. So are their duals, the ∀-Presburger-almost-always problem and the ∀-Presburger-always problem. – The ∀-Presburger-i.o. problem and the ∀-Presburger-eventual problem are both undecidable. So are their duals, the ∃-Presburger-almost-always problem and the ∃-Presburger-always problem. These results can be used to formulate a weak form of Presburger linear temporal logic and developits model-checking theories for NCMFs. They can also be combined with [12] to study the same set of liveness problems on an extended form of discrete timed automata containing, besides clocks, a number of reversalbounded counters and a free counter.
Liveness verification of reversal-bounded multicounter machines with a free counter (extended abstract)
San Pietro P.
2001-01-01
Abstract
We investigate the Presburger liveness problems for nondeterministic reversal-bounded multicounter machines with a free counter (NCMFs). We show the following: – The ∃-Presburger-i.o. problem and the ∃-Presburger-eventual problem are both decidable. So are their duals, the ∀-Presburger-almost-always problem and the ∀-Presburger-always problem. – The ∀-Presburger-i.o. problem and the ∀-Presburger-eventual problem are both undecidable. So are their duals, the ∃-Presburger-almost-always problem and the ∃-Presburger-always problem. These results can be used to formulate a weak form of Presburger linear temporal logic and developits model-checking theories for NCMFs. They can also be combined with [12] to study the same set of liveness problems on an extended form of discrete timed automata containing, besides clocks, a number of reversalbounded counters and a free counter.| File | Dimensione | Formato | |
|---|---|---|---|
|
3-540-45294-X_12.pdf
Accesso riservato
:
Publisher’s version
Dimensione
137.57 kB
Formato
Adobe PDF
|
137.57 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


