The ongoing AugerPrime upgrade of the Pierre Auger Observatory will yield sensitivity and precision for measuring ultra-high energy (UHE) cosmic rays that are significantly improved over the baseline design. A key part is the installation of the Radio Detector (RD), consisting of loop antennas mounted on top of each of the 1660 water-Cherenkov detectors (WCD). These antennas, with polarizations both parallel and perpendicular to Earth’s magnetic field, are sensitive to inclined air showers and will also improve the sky coverage and exposure of the observatory. Of special interest is the great sensitivity to the electromagnetic component of air showers, yielding new information for the reconstruction of the primary mass, energy and arrival direction. Complementing traditional particle detectors like the WCD, the combination of both yields new opportunities to detect rare primary particles, e.g. UHE photons and neutrinos with a large identification probability. Here we present the status and future prospects of the RD. With mass production and deployment ongoing, we show air shower statistics and reconstructions of the already installed detector stations. We detail the layout and integration of the RD, demonstrating the potential of the observatory including radio measurements and RD triggering, especially to detect air showers with weak particle footprints. We show that the new trigger enables the measurement of events for which traditional particle detectors are less sensitive.

Status and expected performance of the AugerPrime Radio Detector

Consolati G.;
2024-01-01

Abstract

The ongoing AugerPrime upgrade of the Pierre Auger Observatory will yield sensitivity and precision for measuring ultra-high energy (UHE) cosmic rays that are significantly improved over the baseline design. A key part is the installation of the Radio Detector (RD), consisting of loop antennas mounted on top of each of the 1660 water-Cherenkov detectors (WCD). These antennas, with polarizations both parallel and perpendicular to Earth’s magnetic field, are sensitive to inclined air showers and will also improve the sky coverage and exposure of the observatory. Of special interest is the great sensitivity to the electromagnetic component of air showers, yielding new information for the reconstruction of the primary mass, energy and arrival direction. Complementing traditional particle detectors like the WCD, the combination of both yields new opportunities to detect rare primary particles, e.g. UHE photons and neutrinos with a large identification probability. Here we present the status and future prospects of the RD. With mass production and deployment ongoing, we show air shower statistics and reconstructions of the already installed detector stations. We detail the layout and integration of the RD, demonstrating the potential of the observatory including radio measurements and RD triggering, especially to detect air showers with weak particle footprints. We show that the new trigger enables the measurement of events for which traditional particle detectors are less sensitive.
2024
38th International Cosmic Ray Conference, ICRC 2023
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1287028
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact