In this work we propose a new data-based approach for robust controller design for a rather general class of recurrent neural networks affected by bounded measurement noise. We first identify the model set compatible with available data in a selected model class via set membership (SM). Then, incremental input-to-state stability and desired performances for the closed loop system are enforced robustly to all models in the identified model set via a linear matrix inequality (LMI) optimization problem. Numerical results show the effectiveness of the comprehensive method.

Data-driven control of echo state-based recurrent neural networks with robust stability guarantees

D'Amico, William;La Bella, Alessio;Farina, Marcello
2025-01-01

Abstract

In this work we propose a new data-based approach for robust controller design for a rather general class of recurrent neural networks affected by bounded measurement noise. We first identify the model set compatible with available data in a selected model class via set membership (SM). Then, incremental input-to-state stability and desired performances for the closed loop system are enforced robustly to all models in the identified model set via a linear matrix inequality (LMI) optimization problem. Numerical results show the effectiveness of the comprehensive method.
2025
Data-based control
Linear matrix inequalities
Recurrent neural networks
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0167691124002627-main.pdf

accesso aperto

: Publisher’s version
Dimensione 677.58 kB
Formato Adobe PDF
677.58 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1286739
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact