Background The cingulum bundle is a brain white matter fasciculus associated with the cingulate gyrus. It connects areas from the temporal to the frontal lobe. It is composed of fibers with different terminations, lengths, and structural properties, related to specific brain functions. We aimed to automatically reconstruct this fasciculus in patients with Alzheimer disease (AD) and mild cognitive impairment (MCI) and to assess whether trajectories have different microstructural properties in relation to dementia progression. Methods Multi-shell high angular resolution diffusion imaging-HARDI image datasets from the "Alzheimer's Disease Neuroimaging Initiative"-ADNI repository of 10 AD, 18 MCI, and 21 cognitive normal (CN) subjects were used to reconstruct three subdivisions of the cingulum bundle, using a probabilistic approach, combined with measurements of diffusion tensor and neurite orientation dispersion and density imaging metrics in each subdivision. Results The subdivisions exhibit different pathways, terminations, and structural characteristics. We found differences in almost all the diffusivity metrics among the subdivisions (p < 0.001 for all the metrics) and between AD versus CN and MCI versus CN subjects for mean diffusivity (p = 0.007-0.038), radial diffusivity (p = 0.008-0.049) and neurite dispersion index (p = 0.005-0.049). Conclusion Results from tractography analysis of the subdivisions of the cingulum bundle showed an association in the role of groups of fibers with their functions and the variance of their properties in relation to dementia progression.

Connectivity related to major brain functions in Alzheimer disease progression: microstructural properties of the cingulum bundle and its subdivision using diffusion-weighted MRI

Greco, Danilo;
2024-01-01

Abstract

Background The cingulum bundle is a brain white matter fasciculus associated with the cingulate gyrus. It connects areas from the temporal to the frontal lobe. It is composed of fibers with different terminations, lengths, and structural properties, related to specific brain functions. We aimed to automatically reconstruct this fasciculus in patients with Alzheimer disease (AD) and mild cognitive impairment (MCI) and to assess whether trajectories have different microstructural properties in relation to dementia progression. Methods Multi-shell high angular resolution diffusion imaging-HARDI image datasets from the "Alzheimer's Disease Neuroimaging Initiative"-ADNI repository of 10 AD, 18 MCI, and 21 cognitive normal (CN) subjects were used to reconstruct three subdivisions of the cingulum bundle, using a probabilistic approach, combined with measurements of diffusion tensor and neurite orientation dispersion and density imaging metrics in each subdivision. Results The subdivisions exhibit different pathways, terminations, and structural characteristics. We found differences in almost all the diffusivity metrics among the subdivisions (p < 0.001 for all the metrics) and between AD versus CN and MCI versus CN subjects for mean diffusivity (p = 0.007-0.038), radial diffusivity (p = 0.008-0.049) and neurite dispersion index (p = 0.005-0.049). Conclusion Results from tractography analysis of the subdivisions of the cingulum bundle showed an association in the role of groups of fibers with their functions and the variance of their properties in relation to dementia progression.
2024
Alzheimer disease, Brain, Cognitive dysfunction, Diffusion magnetic resonance imaging, White matter
File in questo prodotto:
File Dimensione Formato  
s41747-025-00570-5.pdf

accesso aperto

Dimensione 1.2 MB
Formato Adobe PDF
1.2 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1286442
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact