In this protocol, we present a noninvasive in planta bioimaging technique for the analysis of hydrogen peroxide (H2O2) and glutathione redox potential in adult Arabidopsis thaliana plants. The technique is based on the use of stereo fluorescence microscopy to image A. thaliana plants expressing the two genetically encoded fluorescent sensors roGFP2-Orp1 and Grx1-roGFP2. We provide a detailed step-by-step protocol for performing low magnification imaging with mature plants grown in soil or hydroponic systems. This protocol aims to serve the scientific community by providing an accessible approach to noninvasive in planta bioimaging and data analysis.

Noninvasive In Planta Live Measurements of H2O2 and Glutathione Redox Potential with Fluorescent roGFPs-Based Sensors

Tortora, Giorgia;Bassi, Andrea;
2024-01-01

Abstract

In this protocol, we present a noninvasive in planta bioimaging technique for the analysis of hydrogen peroxide (H2O2) and glutathione redox potential in adult Arabidopsis thaliana plants. The technique is based on the use of stereo fluorescence microscopy to image A. thaliana plants expressing the two genetically encoded fluorescent sensors roGFP2-Orp1 and Grx1-roGFP2. We provide a detailed step-by-step protocol for performing low magnification imaging with mature plants grown in soil or hydroponic systems. This protocol aims to serve the scientific community by providing an accessible approach to noninvasive in planta bioimaging and data analysis.
2024
Methods in Molecular Biology
978-1-0716-3826-2
Data analysis pipeline
Fluorescent biosensors
Glutathione redox status
Hydrogen peroxide
Image analysis
Noninvasive bioimaging
Salt stress
File in questo prodotto:
File Dimensione Formato  
978-1-0716-3826-2_4.pdf

Accesso riservato

: Publisher’s version
Dimensione 931.1 kB
Formato Adobe PDF
931.1 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1286249
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact