The recent significant progress in developmental bio-imaging of live multicellular organisms has been greatly facilitated by the development of light sheet fluorescence microscopy (LSFM). Both commercial and custom LSFM systems offer the best means for long-term rapid data collection over a wide field of view at single-cell resolution. This is thanks to the low light exposure required for imaging and consequent limited photodamage to the biological sample, and the development of custom holders and mounting techniques that allow for specimens to be imaged in near-normal physiological conditions. This method has been successfully applied to plant cell biology and is currently seen as one of the most efficient techniques for 3D time-lapse imaging for quantitative studies. LSFM allows one to capture and quantify dynamic processes across various levels, from plant subcellular compartments to whole cells, tissues, and entire plant organs. Here we present a method to carry out LSFM on Arabidopsis leaves expressing fluorescent markers targeted to the ER. We will focus on a protocol to mount the sample, test the phototoxicity of the LSFM system, set up a LSFM experiment, and monitor the dynamics of the ER during heat shock.

Observing ER Dynamics over Long Timescales Using Light Sheet Fluorescence Microscopy

Candeo, Alessia
2024-01-01

Abstract

The recent significant progress in developmental bio-imaging of live multicellular organisms has been greatly facilitated by the development of light sheet fluorescence microscopy (LSFM). Both commercial and custom LSFM systems offer the best means for long-term rapid data collection over a wide field of view at single-cell resolution. This is thanks to the low light exposure required for imaging and consequent limited photodamage to the biological sample, and the development of custom holders and mounting techniques that allow for specimens to be imaged in near-normal physiological conditions. This method has been successfully applied to plant cell biology and is currently seen as one of the most efficient techniques for 3D time-lapse imaging for quantitative studies. LSFM allows one to capture and quantify dynamic processes across various levels, from plant subcellular compartments to whole cells, tissues, and entire plant organs. Here we present a method to carry out LSFM on Arabidopsis leaves expressing fluorescent markers targeted to the ER. We will focus on a protocol to mount the sample, test the phototoxicity of the LSFM system, set up a LSFM experiment, and monitor the dynamics of the ER during heat shock.
2024
The Plant Endoplasmic Reticulum
9781071637098
9781071637104
Arabidopsis
FIJI
GFP-HDEL
Light sheet fluorescence microscopy (LSFM)
Photobleaching
Phototoxicity
File in questo prodotto:
File Dimensione Formato  
2540_001.pdf

Accesso riservato

: Publisher’s version
Dimensione 1.34 MB
Formato Adobe PDF
1.34 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1286235
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact