Portfolio optimization aims at finding the optimal allocation of a given wealth among different assets to maximize an investor's utility function. A major critical issue concerns the prediction of future asset returns to forecast market evolution, due to the non-stationarity and volatility of asset prices. In this work, a learning-based Model Predictive Control (MPC) strategy for multi-period portfolio optimization is proposed, where the return prediction model is estimated via a novel trading-oriented learning paradigm. According to such a perspective, the model parameters are not the ones minimizing the prediction error but those that directly maximize the investor's utility. An extensive experimental study carried out on real-market data shows the potential improvements introduced by the proposed methodology compared to benchmark financial strategies.

Model predictive control for multi-period portfolio optimization: a trading-oriented learning approach

Abbracciavento, F.;Formentin, S.
2024-01-01

Abstract

Portfolio optimization aims at finding the optimal allocation of a given wealth among different assets to maximize an investor's utility function. A major critical issue concerns the prediction of future asset returns to forecast market evolution, due to the non-stationarity and volatility of asset prices. In this work, a learning-based Model Predictive Control (MPC) strategy for multi-period portfolio optimization is proposed, where the return prediction model is estimated via a novel trading-oriented learning paradigm. According to such a perspective, the model parameters are not the ones minimizing the prediction error but those that directly maximize the investor's utility. An extensive experimental study carried out on real-market data shows the potential improvements introduced by the proposed methodology compared to benchmark financial strategies.
2024
Bayesian optimization
identification for control
learning MPC
Portfolio optimization
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1286216
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact