We study the massively parallel performance of a h-adaptive solver for atmosphere dynamics that allows for non-conforming mesh refinement. The numerical method is based on a Discontinuous Galerkin (DG) spatial discretization, highly scalable thanks to its data locality properties, and on a second order Implicit-Explicit Runge-Kutta (IMEX-RK) method for time discretization, particularly well suited for low Mach number flows. Simulations with non-conforming meshes for flows over orography can increase the accuracy of the local flow description without affecting the larger scales, which can be solved on coarser meshes. We show that the local refining procedure has no significant impact on the parallel performance and, therefore, both efficiency and scalability can be achieved in this framework.

Efficient and scalable atmospheric dynamics simulations using non-conforming meshes

Bonaventura, Luca
2025-01-01

Abstract

We study the massively parallel performance of a h-adaptive solver for atmosphere dynamics that allows for non-conforming mesh refinement. The numerical method is based on a Discontinuous Galerkin (DG) spatial discretization, highly scalable thanks to its data locality properties, and on a second order Implicit-Explicit Runge-Kutta (IMEX-RK) method for time discretization, particularly well suited for low Mach number flows. Simulations with non-conforming meshes for flows over orography can increase the accuracy of the local flow description without affecting the larger scales, which can be solved on coarser meshes. We show that the local refining procedure has no significant impact on the parallel performance and, therefore, both efficiency and scalability can be achieved in this framework.
2025
File in questo prodotto:
File Dimensione Formato  
orlando_bonaventura_etal_procedia_2025.pdf

Accesso riservato

Dimensione 1.29 MB
Formato Adobe PDF
1.29 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1284625
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact