Money laundering is a financial crime that poses a serious threat to financial integrity and social security. The growing number of transactions makes it necessary to use automatic tools that help law enforcement agencies detect such criminal activity. In this work, we present Amatriciana, a novel approach based on Graph Neural Networks to detect money launderers inside a graph of transactions by considering temporal information. Amatriciana uses the whole graph of transactions without splitting it into several time-based subgraphs, exploiting all relational information in the dataset. Our experiments on a public dataset reveal that the model can learn from a limited amount of data. Furthermore, when more data is available, the model outperforms other State-of-the-art approaches; in particular, Amatriciana decreases the number of False Positives (FPs) while detecting many launderers. In summary, Amatriciana achieves an F1 score of 0.76. In addition, it lowers the FPs by 55% with respect to other State-of-the-art models.

Amatriciana: Exploiting Temporal GNNs for Robust and Efficient Money Laundering Detection

Di Gennaro, Marco;Panebianco, Francesco;Zanero, Stefano;Carminati, Michele
2024-01-01

Abstract

Money laundering is a financial crime that poses a serious threat to financial integrity and social security. The growing number of transactions makes it necessary to use automatic tools that help law enforcement agencies detect such criminal activity. In this work, we present Amatriciana, a novel approach based on Graph Neural Networks to detect money launderers inside a graph of transactions by considering temporal information. Amatriciana uses the whole graph of transactions without splitting it into several time-based subgraphs, exploiting all relational information in the dataset. Our experiments on a public dataset reveal that the model can learn from a limited amount of data. Furthermore, when more data is available, the model outperforms other State-of-the-art approaches; in particular, Amatriciana decreases the number of False Positives (FPs) while detecting many launderers. In summary, Amatriciana achieves an F1 score of 0.76. In addition, it lowers the FPs by 55% with respect to other State-of-the-art models.
2024
2024 IEEE International Conference on Data Mining Workshops (ICDMW)
9798331530631
Graph Neural Networks
Anti Money Laundering
Fraud Detection
File in questo prodotto:
File Dimensione Formato  
Amatriciana.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 913.97 kB
Formato Adobe PDF
913.97 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1284209
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact