A key component in developing atrial digital twins (ADT) - virtual representations of patients’ atria — is the accurate prescription of myocardial fibers which are essential for the tissue characterization. Due to the difficulty of reconstructing atrial fibers from medical imaging, a widely used strategy for fiber generation in ADT relies on mathematical models. Existing methodologies utilize semi-automatic approaches, are tailored to specific morphologies, and lack rigorous validation against imaging fiber data. In this study, we introduce a novel atrial Laplace–Dirichlet-Rule-Based Method (LDRBM) for prescribing highly detailed myofiber orientations and providing robust regional annotation in bi-atrial morphologies of any complexity. The robustness of our approach is verified in eight extremely detailed bi-atrial geometries, derived from a sub-millimeter Diffusion-Tensor-Magnetic-Resonance Imaging (DTMRI) human atrial fiber dataset. We validate the LDRBM by quantitatively recreating each of the DTMRI fiber architectures: a comprehensive comparison with DTMRI ground truth data is conducted, investigating differences between electrophysiology (EP) simulations provided by either LDRBM and DTMRI fibers. Finally, we demonstrate that the novel LDRBM outperforms current state-of-the-art (LDRBMs and Universal Atrial Coordinates) fiber models, confirming the exceptional accuracy of our methodology and the critical importance of incorporating detailed fiber orientations in EP simulations. Ultimately, this work represents a fundamental step towards the development of physics-based digital twins of the human atria, establishing a new standard for prescribing fibers in ADT.

Defining myocardial fiber bundle architecture in atrial digital twins

Piersanti, Roberto;Quarteroni, Alfio;Dede', Luca;
2025-01-01

Abstract

A key component in developing atrial digital twins (ADT) - virtual representations of patients’ atria — is the accurate prescription of myocardial fibers which are essential for the tissue characterization. Due to the difficulty of reconstructing atrial fibers from medical imaging, a widely used strategy for fiber generation in ADT relies on mathematical models. Existing methodologies utilize semi-automatic approaches, are tailored to specific morphologies, and lack rigorous validation against imaging fiber data. In this study, we introduce a novel atrial Laplace–Dirichlet-Rule-Based Method (LDRBM) for prescribing highly detailed myofiber orientations and providing robust regional annotation in bi-atrial morphologies of any complexity. The robustness of our approach is verified in eight extremely detailed bi-atrial geometries, derived from a sub-millimeter Diffusion-Tensor-Magnetic-Resonance Imaging (DTMRI) human atrial fiber dataset. We validate the LDRBM by quantitatively recreating each of the DTMRI fiber architectures: a comprehensive comparison with DTMRI ground truth data is conducted, investigating differences between electrophysiology (EP) simulations provided by either LDRBM and DTMRI fibers. Finally, we demonstrate that the novel LDRBM outperforms current state-of-the-art (LDRBMs and Universal Atrial Coordinates) fiber models, confirming the exceptional accuracy of our methodology and the critical importance of incorporating detailed fiber orientations in EP simulations. Ultimately, this work represents a fundamental step towards the development of physics-based digital twins of the human atria, establishing a new standard for prescribing fibers in ADT.
2025
Cardiac digital twin
Cardiac fiber architecture
Computational modeling
Numerical simulations
Precision medicine
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1283967
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact