Open quantum systems weakly coupled to the environment are modeled by completely positive, trace preserving semigroups of linear maps. The generators of such evolutions are called Lindbladians. In the setting of quantum many-body systems on a lattice it is natural to consider Lindbladians that decompose into a sum of local interactions with decreasing strength with respect to the size of their support. For both practical and theoretical reasons, it is crucial to estimate the impact that perturbations in the generating Lindbladian, arising as noise or errors, can have on the evolution. These local perturbations are potentially unbounded, but constrained to respect the underlying lattice structure. We show that even for polynomially decaying errors in the Lindbladian, local observables and correlation functions are stable if the unperturbed Lindbladian has a unique fixed point and a mixing time that scales logarithmically with the system size. The proof relies on Lieb–Robinson bounds, which describe a finite group velocity for propagation of information in local systems. As a main example, we prove that classical Glauber dynamics is stable under local perturbations, including perturbations in the transition rates, which may not preserve detailed balance.

Stability of Local Quantum Dissipative Systems

Lucia A.;
2015-01-01

Abstract

Open quantum systems weakly coupled to the environment are modeled by completely positive, trace preserving semigroups of linear maps. The generators of such evolutions are called Lindbladians. In the setting of quantum many-body systems on a lattice it is natural to consider Lindbladians that decompose into a sum of local interactions with decreasing strength with respect to the size of their support. For both practical and theoretical reasons, it is crucial to estimate the impact that perturbations in the generating Lindbladian, arising as noise or errors, can have on the evolution. These local perturbations are potentially unbounded, but constrained to respect the underlying lattice structure. We show that even for polynomially decaying errors in the Lindbladian, local observables and correlation functions are stable if the unperturbed Lindbladian has a unique fixed point and a mixing time that scales logarithmically with the system size. The proof relies on Lieb–Robinson bounds, which describe a finite group velocity for propagation of information in local systems. As a main example, we prove that classical Glauber dynamics is stable under local perturbations, including perturbations in the transition rates, which may not preserve detailed balance.
2015
File in questo prodotto:
File Dimensione Formato  
12 - 10.1007_s00220-015-2355-3.pdf

Accesso riservato

: Publisher’s version
Dimensione 997.21 kB
Formato Adobe PDF
997.21 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1282558
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 50
  • ???jsp.display-item.citation.isi??? 51
social impact