The property of superadditivity of the quantum relative entropy states that, in a bipartite system HAB=HA⊗HB , for every density operator ΡAB , one has D(ΡAB||σA⊗σB)=D(ΡA||σA)+D(ΡB||σB) . In this paper, we provide an extension of this inequality for arbitrary density operators σAB . More specifically, we prove that a(σAB)D(ΡAB||σAB)=D(ΡA||σA)+D(ΡB||σB) holds for all bipartite states ΡAB and σAB , where a(σAB)=1+2?σ-1/2A⊗σ-1/2BσABσ-1/2A⊗σ-1/2B-1AB?∞.
Superadditivity of Quantum Relative Entropy for General States
Lucia A.;
2018-01-01
Abstract
The property of superadditivity of the quantum relative entropy states that, in a bipartite system HAB=HA⊗HB , for every density operator ΡAB , one has D(ΡAB||σA⊗σB)=D(ΡA||σA)+D(ΡB||σB) . In this paper, we provide an extension of this inequality for arbitrary density operators σAB . More specifically, we prove that a(σAB)D(ΡAB||σAB)=D(ΡA||σA)+D(ΡB||σB) holds for all bipartite states ΡAB and σAB , where a(σAB)=1+2?σ-1/2A⊗σ-1/2BσABσ-1/2A⊗σ-1/2B-1AB?∞.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
10 - 10.1109-TIT.2017.2772800.pdf
Accesso riservato
:
Publisher’s version
Dimensione
259.33 kB
Formato
Adobe PDF
|
259.33 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


