This study investigates the extraction, characterization, and cosmetic application of silk sericin, a protein derived from Bombyx mori silkworm cocoons, with a focus on its potential in sustainable and biodegradable cosmetic formulations. Sericin was extracted using a high-temperature, high-pressure autoclave degumming method and spray-dried into a stable powder. The molecular weight distribution of sericin was analyzed, revealing fractions ranging from 10 to 37 kDa in Elution 1A and 25–40 kDa in Elution 1B. Electrospinning of sericin led to increased β-sheet content compared to raw sericin, as shown by secondary structure analyses. The electrospun sericin was then blended with gelatin to enhance mechanical strength and stability, resulting in robust films suitable for cosmetic applications. These films were developed into eye contour patches designed to deliver moisturizing, elasticizing, and smoothing effects. The efficacy of the patches was evaluated in 20 participants, showing increased skin elasticity (+35.1%) and smoothness (Ra: −30.7%, Rz: −26.6%), though a decline in hydration was observed, potentially indicating opportunities for further optimization.

Silk Sericin-Based Electrospun Nanofibers Forming Films for Cosmetic Applications: Preparation, Characterization, and Efficacy Evaluation

I. Dragojlov;R. Aad;S. Vesentini
2025-01-01

Abstract

This study investigates the extraction, characterization, and cosmetic application of silk sericin, a protein derived from Bombyx mori silkworm cocoons, with a focus on its potential in sustainable and biodegradable cosmetic formulations. Sericin was extracted using a high-temperature, high-pressure autoclave degumming method and spray-dried into a stable powder. The molecular weight distribution of sericin was analyzed, revealing fractions ranging from 10 to 37 kDa in Elution 1A and 25–40 kDa in Elution 1B. Electrospinning of sericin led to increased β-sheet content compared to raw sericin, as shown by secondary structure analyses. The electrospun sericin was then blended with gelatin to enhance mechanical strength and stability, resulting in robust films suitable for cosmetic applications. These films were developed into eye contour patches designed to deliver moisturizing, elasticizing, and smoothing effects. The efficacy of the patches was evaluated in 20 participants, showing increased skin elasticity (+35.1%) and smoothness (Ra: −30.7%, Rz: −26.6%), though a decline in hydration was observed, potentially indicating opportunities for further optimization.
2025
silk-sericin; degumming; electrospinning; eye patches; sericin-based films; moisturizing; elasticizing; smoothing
File in questo prodotto:
File Dimensione Formato  
molecules-30-00715_accepted_small.pdf

accesso aperto

Descrizione: full text
: Publisher’s version
Dimensione 946.55 kB
Formato Adobe PDF
946.55 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1282187
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact