In recent years, Vision-Based Navigation (VBN) techniques have emerged as a fundamental component to enable autonomous spacecraft operations, particularly in challenging environments such as planetary landings, where ground control may be limited or unavailable. Developing and testing VBN algorithms requires the availability of a large number of realistic images of the application scenario; however, these are rarely available. This paper presents a novel rendering software tool to generate accurate synthetic optical images of the lunar surface by leveraging high-resolution Digital Terrain Models (DTMs). Unlike traditional ray-tracing algorithms, the method iteratively propagates camera rays to determine their intersection with the terrain surface defined by a Digital Elevation Model (DEM). The color information is then retrieved from the corresponding Digital Orthophoto Model (DOM) through the knowledge of the ray impact points, bypassing the need for the costly computation of shadows, reflections, and refractions effects. The rendering performance is demonstrated through a comprehensive selection of images of the lunar surface under different illumination conditions and camera orientations.

Optical Image Generation Through Digital Terrain Models for Autonomous Lunar Navigation

Ceresoli, Michele;Silvestrini, Stefano;Lavagna, Michèle
2025-01-01

Abstract

In recent years, Vision-Based Navigation (VBN) techniques have emerged as a fundamental component to enable autonomous spacecraft operations, particularly in challenging environments such as planetary landings, where ground control may be limited or unavailable. Developing and testing VBN algorithms requires the availability of a large number of realistic images of the application scenario; however, these are rarely available. This paper presents a novel rendering software tool to generate accurate synthetic optical images of the lunar surface by leveraging high-resolution Digital Terrain Models (DTMs). Unlike traditional ray-tracing algorithms, the method iteratively propagates camera rays to determine their intersection with the terrain surface defined by a Digital Elevation Model (DEM). The color information is then retrieved from the corresponding Digital Orthophoto Model (DOM) through the knowledge of the ray impact points, bypassing the need for the costly computation of shadows, reflections, and refractions effects. The rendering performance is demonstrated through a comprehensive selection of images of the lunar surface under different illumination conditions and camera orientations.
2025
ray tracing; image rendering; vision-based navigation; digital terrain models
File in questo prodotto:
File Dimensione Formato  
CEREM02-25.pdf

accesso aperto

: Publisher’s version
Dimensione 24.21 MB
Formato Adobe PDF
24.21 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1281668
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact