: Targeting the development of 3D printed reservoir-like vaginal rings (VRs) intended to fulfill the needs of precision medicine, prototypes ensuring prolonged release of metronidazole (MTZ) were preliminary manufactured and tested. Indeed, this drug represents the first-line therapy against bacterial vaginosis, which would especially benefit from convenient as well as easy dose adjustment and from more than 48 h continuous release, thus avoiding barely tolerated and repeated administrations. Starting from a soft thermoplastic elastomer (TPE), hollow ring structures were successfully printed at 190 °C and then extemporaneously filled with drug-loaded, in-situ-crosslinking hydrogel formulations based on alginate (ALG). 3 VR designs, differing in dimensions, number of open surfaces as well as in relevant areas were investigated, together with 9 drug-saturated hydrogel formulations containing extra suspended MTZ particles (20-50 %) and increasing ALG concentrations (2-6 %). Manufacturing of final rings was fine-tuned based on materials thermo-mechanical properties. For comparison purposes, hydrogels with analogous composition were either cast using purposely developed molds or 3D printed mimicking the ring design. VR release performance turned out dependent on the drug solubility and on the surface area available for hydrogel contact with vaginal fluids. Interestingly, this surface resulted correlated to both the outer and inner structure of the system. The data collected would provide an effective asset to increase the versatility of reservoir-like VRs, making them a powerful tool towards therapy customization.

3D printed reservoir-like vaginal rings for antibiotic delivery

Chiappa, Arianna;Fusari, Alice;Petrini, Paola;Vangosa, Francesco Briatico;
2025-01-01

Abstract

: Targeting the development of 3D printed reservoir-like vaginal rings (VRs) intended to fulfill the needs of precision medicine, prototypes ensuring prolonged release of metronidazole (MTZ) were preliminary manufactured and tested. Indeed, this drug represents the first-line therapy against bacterial vaginosis, which would especially benefit from convenient as well as easy dose adjustment and from more than 48 h continuous release, thus avoiding barely tolerated and repeated administrations. Starting from a soft thermoplastic elastomer (TPE), hollow ring structures were successfully printed at 190 °C and then extemporaneously filled with drug-loaded, in-situ-crosslinking hydrogel formulations based on alginate (ALG). 3 VR designs, differing in dimensions, number of open surfaces as well as in relevant areas were investigated, together with 9 drug-saturated hydrogel formulations containing extra suspended MTZ particles (20-50 %) and increasing ALG concentrations (2-6 %). Manufacturing of final rings was fine-tuned based on materials thermo-mechanical properties. For comparison purposes, hydrogels with analogous composition were either cast using purposely developed molds or 3D printed mimicking the ring design. VR release performance turned out dependent on the drug solubility and on the surface area available for hydrogel contact with vaginal fluids. Interestingly, this surface resulted correlated to both the outer and inner structure of the system. The data collected would provide an effective asset to increase the versatility of reservoir-like VRs, making them a powerful tool towards therapy customization.
2025
Alginate-based hydrogel
Hollow vaginal ring
Metronidazole
Personalized therapy
Vaginal infections
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0378517325000535-main.pdf

Accesso riservato

: Publisher’s version
Dimensione 4.24 MB
Formato Adobe PDF
4.24 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1281485
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact