Purpose: Radiomics has revolutionized clinical research by enabling objective measurements of imaging-derived biomarkers. However, the true potential of radiomics necessitates a comprehensive understanding of the biological basis of extracted features to serve as a clinical decision support. In this work, we propose an end-to-end framework for the in silico simulation of [18F]FLT PET imaging process in Pancreatic Ductal Adenocarcinoma, accounting for the biological characterization of tissues (including perfusion and fibrosis) on tracer delivery. We thus establish a direct association between radiomics features and the underlying biological properties of tissues. Methods: We considered 4 immunohistochemically stained Whole Slide Images of pancreatic tissue of one healthy control and three patients with PDAC and/or precursor lesions. From marker-specific images, tissue-depending diffusivity properties were estimated and computational domains were built to simulate the [18F]FLT spatial-temporal uptake exploiting Partial Differential Equations and Finite Elements Method. Consequently, we simulated the imaging process obtaining surrogated PET images for the considered patients, and we performed image-derived features extraction from PET images to be mapped with biological properties via correlation estimation. Results: The framework captured the phenotypic differences and generated Time Activity Curves reflecting the underlying tissue composition. Image-derived biomarkers were ranked in view of their association with biological characteristics of the tissue, unveiling their molecular correlative. Moreover, we showed that the proposed pipeline could serve as a digital phantom to optimize the image acquisition for lesion detection. Conclusions: This innovative framework holds the potential to enhance interpretability and reliability of radiomics, fostering the adoption in personalized nuclear medicine and patient care.

Unveiling the biological side of PET-derived biomarkers: a simulation-based approach applied to PDAC assessment

Cavinato, Lara;Zunino, Paolo;Manzoni, Andrea;Ieva, Francesca;
2024-01-01

Abstract

Purpose: Radiomics has revolutionized clinical research by enabling objective measurements of imaging-derived biomarkers. However, the true potential of radiomics necessitates a comprehensive understanding of the biological basis of extracted features to serve as a clinical decision support. In this work, we propose an end-to-end framework for the in silico simulation of [18F]FLT PET imaging process in Pancreatic Ductal Adenocarcinoma, accounting for the biological characterization of tissues (including perfusion and fibrosis) on tracer delivery. We thus establish a direct association between radiomics features and the underlying biological properties of tissues. Methods: We considered 4 immunohistochemically stained Whole Slide Images of pancreatic tissue of one healthy control and three patients with PDAC and/or precursor lesions. From marker-specific images, tissue-depending diffusivity properties were estimated and computational domains were built to simulate the [18F]FLT spatial-temporal uptake exploiting Partial Differential Equations and Finite Elements Method. Consequently, we simulated the imaging process obtaining surrogated PET images for the considered patients, and we performed image-derived features extraction from PET images to be mapped with biological properties via correlation estimation. Results: The framework captured the phenotypic differences and generated Time Activity Curves reflecting the underlying tissue composition. Image-derived biomarkers were ranked in view of their association with biological characteristics of the tissue, unveiling their molecular correlative. Moreover, we showed that the proposed pipeline could serve as a digital phantom to optimize the image acquisition for lesion detection. Conclusions: This innovative framework holds the potential to enhance interpretability and reliability of radiomics, fostering the adoption in personalized nuclear medicine and patient care.
2024
Biological interpretation
Digital phantom
Pancreatic ductal adenocarcinoma
Partial differential equations
Radiomics
[18F]FLT PET
File in questo prodotto:
File Dimensione Formato  
s00259-024-06958-6.pdf

Accesso riservato

: Publisher’s version
Dimensione 3.84 MB
Formato Adobe PDF
3.84 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1281267
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact