A classical result of Milman roughly states that every Lipschitz function on Sn is almost constant on a sufficiently high-dimensional sphere Sm⊂Sn. In this paper we extend the result by proving that any Lipschitz function on a positively curved homogeneous space is almost constant on a high dimensional submanifold.

Concentration on submanifolds of positively curved homogeneous spaces

Nicolò De Ponti
2022-01-01

Abstract

A classical result of Milman roughly states that every Lipschitz function on Sn is almost constant on a sufficiently high-dimensional sphere Sm⊂Sn. In this paper we extend the result by proving that any Lipschitz function on a positively curved homogeneous space is almost constant on a high dimensional submanifold.
2022
File in questo prodotto:
File Dimensione Formato  
Published version - Concentration submanifolds.pdf

Accesso riservato

: Publisher’s version
Dimensione 269.7 kB
Formato Adobe PDF
269.7 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1280428
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact