The performance of FRP-bonded concrete is heavily influenced by the properties of the bond between the two materials. Various bond-slip models incorporating interfacial bond properties have been developed to understand and predict this behaviour. In a bond-slip model, the interfacial bond properties are specified in terms of the bond shear stress at the interface and the associated slip or interfacial fracture toughness (energy). Therefore, it is crucial to determine the sensitivity of these properties to the structural response, as it affects the prediction of FRP-bonded test samples and debonding failure modes. This study investigates the sensitivities of interfacial bond-slip properties using a bond-slip model comprising ascending and descending curves. The results indicate that the interfacial fracture energy significantly affects the maximum load resistance, while the ascending curve has a substantial impact on the effective bond length. These findings shed light on the importance of interfacial bond properties in determining the performance and behaviour of FRP-bonded concrete structures.

Sensitivities of Interfacial Bond-Sip Properties in Predicting the Behaviour of FRP-Strengthened Concrete

Milani G.
2024-01-01

Abstract

The performance of FRP-bonded concrete is heavily influenced by the properties of the bond between the two materials. Various bond-slip models incorporating interfacial bond properties have been developed to understand and predict this behaviour. In a bond-slip model, the interfacial bond properties are specified in terms of the bond shear stress at the interface and the associated slip or interfacial fracture toughness (energy). Therefore, it is crucial to determine the sensitivity of these properties to the structural response, as it affects the prediction of FRP-bonded test samples and debonding failure modes. This study investigates the sensitivities of interfacial bond-slip properties using a bond-slip model comprising ascending and descending curves. The results indicate that the interfacial fracture energy significantly affects the maximum load resistance, while the ascending curve has a substantial impact on the effective bond length. These findings shed light on the importance of interfacial bond properties in determining the performance and behaviour of FRP-bonded concrete structures.
2024
Lecture Notes in Civil Engineering
9783031446023
9783031446030
Bond-Slip Model
FRP Strengthened Concrete
Interfacial Bond Properties
Sensitivity Study
File in questo prodotto:
File Dimensione Formato  
2024_LNCE_Vilnius_Lev_Mil.pdf

Accesso riservato

Descrizione: 2024_LNCE_Vilnius_Lev_Mil
: Publisher’s version
Dimensione 1.2 MB
Formato Adobe PDF
1.2 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1280025
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact