Poly(vinylidene fluoride) (PVDF) is among the most produced fluoropolymers, second only to polytetrafluoroethylene. Despite its popularity, the complex microstructural properties achieved during the polymerization are not well documented in the literature. In particular, available models only track the chain length distribution of the polymer, while neglecting the distribution of other important properties, affecting the final behavior of the product. In this work, a 2D kinetic model, evaluating not only the chain length but also the number of terminal double bonds (TDBs) per chain, is developed. The numerical solution of the model is achieved by fractionating the population of polymer chains into classes with a specific number of TDBs and using the method of moments for each class. The model results are compared with experimental evidences for the amount of produced polymer, moles of main chain-ends, number, and weight average molecular weight as well as full molecular weight distribution. Based on this comparison, kinetic parameters are estimated by optimization using genetic algorithm. The model reliability is finally verified using additional experimental data at different temperatures and amounts of initiator.

Kinetic Investigation of the Emulsion Polymerization of Vinylidene Fluoride

Hanamirian, Burak;Storti, Giuseppe;Sponchioni, Mattia
2024-01-01

Abstract

Poly(vinylidene fluoride) (PVDF) is among the most produced fluoropolymers, second only to polytetrafluoroethylene. Despite its popularity, the complex microstructural properties achieved during the polymerization are not well documented in the literature. In particular, available models only track the chain length distribution of the polymer, while neglecting the distribution of other important properties, affecting the final behavior of the product. In this work, a 2D kinetic model, evaluating not only the chain length but also the number of terminal double bonds (TDBs) per chain, is developed. The numerical solution of the model is achieved by fractionating the population of polymer chains into classes with a specific number of TDBs and using the method of moments for each class. The model results are compared with experimental evidences for the amount of produced polymer, moles of main chain-ends, number, and weight average molecular weight as well as full molecular weight distribution. Based on this comparison, kinetic parameters are estimated by optimization using genetic algorithm. The model reliability is finally verified using additional experimental data at different temperatures and amounts of initiator.
2024
emulsion polymerization
kinetic model
method of classes
polymer microstructure
vinylidene fluoride
File in questo prodotto:
File Dimensione Formato  
Kinetic Investigation of the Emulsion Polymerization of Vinylidene Fluoride.pdf

accesso aperto

: Publisher’s version
Dimensione 1.14 MB
Formato Adobe PDF
1.14 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1279788
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact