In this paper, we review the notion of generalized partial-slice monogenic functions that was introduced by the authors in Xu and Sabadini (Generalized partial-slice monogenic functions, arXiv:2309.03698, 2023). The class of these functions includes both the theory of monogenic functions and of slice monogenic functions over Clifford algebras and it is obtained via a synthesis operator which combines a generalized Cauchy-Riemann operator with an operator acting on slices. Besides recalling the fundamental features, we provide a notion of *\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-product based on the CK-extension and discuss the smoothness of generalized partial-slice functions.
Generalized Partial-Slice Monogenic Functions: A Synthesis of Two Function Theories
Sabadini I.
2024-01-01
Abstract
In this paper, we review the notion of generalized partial-slice monogenic functions that was introduced by the authors in Xu and Sabadini (Generalized partial-slice monogenic functions, arXiv:2309.03698, 2023). The class of these functions includes both the theory of monogenic functions and of slice monogenic functions over Clifford algebras and it is obtained via a synthesis operator which combines a generalized Cauchy-Riemann operator with an operator acting on slices. Besides recalling the fundamental features, we provide a notion of *\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-product based on the CK-extension and discuss the smoothness of generalized partial-slice functions.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.