Structural health monitoring (SHM) has become paramount for developing cheaper and more reliable maintenance policies. The advantages coming from adopting such process have turned out to be particularly evident when dealing with plated structures. In this context, state-of-the-art methods are based on exciting and acquiring ultrasonic-guided waves through a permanently installed sensor network. A baseline is registered when the structure is healthy, and newly acquired signals are compared to it to detect, localize, and quantify damage. To this purpose, the performance of traditional methods has been overcome by data-driven approaches, which allow processing a larger amount of data without losing diagnostic information. However, to date, no diagnostic method can deal with varying environmental and operational conditions (EOCs). This work aims to present a proof-of-concept that state-of-the-art machine learning methods can be used for reducing the impact of EOCs on the performance of damage diagnosis methods. Generative artificial intelligence was leveraged to mitigate the impact of temperature variations on ultrasonic guided wave-based SHM. Specifically, variational autoencoders and singular value decomposition were combined to learn the influence of temperature on guided waves. After training, the generative part of the algorithm was used to reconstruct signals at new unseen temperatures. Moreover, a refined version of the algorithm called forced variational autoencoder was introduced to further improve the reconstruction capabilities. The accuracy of the proposed framework was demonstrated against real measurements on a composite plate.

Mitigating the Impact of Temperature Variations on Ultrasonic Guided Wave-Based Structural Health Monitoring through Variational Autoencoders

Junges R.;Lomazzi L.;Miele Lorenzo;Giglio M.;Cadini F.
2024-01-01

Abstract

Structural health monitoring (SHM) has become paramount for developing cheaper and more reliable maintenance policies. The advantages coming from adopting such process have turned out to be particularly evident when dealing with plated structures. In this context, state-of-the-art methods are based on exciting and acquiring ultrasonic-guided waves through a permanently installed sensor network. A baseline is registered when the structure is healthy, and newly acquired signals are compared to it to detect, localize, and quantify damage. To this purpose, the performance of traditional methods has been overcome by data-driven approaches, which allow processing a larger amount of data without losing diagnostic information. However, to date, no diagnostic method can deal with varying environmental and operational conditions (EOCs). This work aims to present a proof-of-concept that state-of-the-art machine learning methods can be used for reducing the impact of EOCs on the performance of damage diagnosis methods. Generative artificial intelligence was leveraged to mitigate the impact of temperature variations on ultrasonic guided wave-based SHM. Specifically, variational autoencoders and singular value decomposition were combined to learn the influence of temperature on guided waves. After training, the generative part of the algorithm was used to reconstruct signals at new unseen temperatures. Moreover, a refined version of the algorithm called forced variational autoencoder was introduced to further improve the reconstruction capabilities. The accuracy of the proposed framework was demonstrated against real measurements on a composite plate.
2024
generative artificial intelligence
temperature
ultrasonic guided wave
variational autoencoder
File in questo prodotto:
File Dimensione Formato  
Mitigating the Impact of Temperature Variations on Ultrasonic Guided Wave-Based Structural Health Monitoring through Variational Autoencoders.pdf

accesso aperto

Dimensione 3.49 MB
Formato Adobe PDF
3.49 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1278750
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact