Fatigue damage prognosis always requires a degradation model describing the damage evolution with time; thus, the prognostic performance highly depends on the selection of such a model. The best model should probably be case specific, calling for the fusion of multiple degradation models for a robust prognosis. In this context, this paper proposes a scheme of online fusing multiple models in a particle filter (PF)-based damage prognosis framework. First, each prognostic model has its process equation built through a physics-based or data-driven degradation model and has its measurement equation linking the damage state and the measurement. Second, each model is independently processed through one PF to provide one group of particles. Then, the particles from all models are adopted for remaining useful life prediction. Finally, the particles from each PF are fused with those from all the other PFs to improve their particle diversity, and consequently, to provide better estimation and prognostic performance. The feasibility and robustness of the proposed method are validated by an experimental study, where an aluminum lug structure subject to fatigue crack growth is monitored by a guided wave measurement system.

Particle filter-based fatigue damage prognosis by fusing multiple degradation models

Li Tianzhi;Yuan S.;Zarouchas D.;Sbarufatti C.;Cadini F.
2024-01-01

Abstract

Fatigue damage prognosis always requires a degradation model describing the damage evolution with time; thus, the prognostic performance highly depends on the selection of such a model. The best model should probably be case specific, calling for the fusion of multiple degradation models for a robust prognosis. In this context, this paper proposes a scheme of online fusing multiple models in a particle filter (PF)-based damage prognosis framework. First, each prognostic model has its process equation built through a physics-based or data-driven degradation model and has its measurement equation linking the damage state and the measurement. Second, each model is independently processed through one PF to provide one group of particles. Then, the particles from all models are adopted for remaining useful life prediction. Finally, the particles from each PF are fused with those from all the other PFs to improve their particle diversity, and consequently, to provide better estimation and prognostic performance. The feasibility and robustness of the proposed method are validated by an experimental study, where an aluminum lug structure subject to fatigue crack growth is monitored by a guided wave measurement system.
2024
damage prognosis
degradation model
fusion
Lamb waves
particle diversity
particle filter
Structural health monitoring
File in questo prodotto:
File Dimensione Formato  
Particle filter-based fatigue damage prognosis by fusing multiple degradation models.pdf

accesso aperto

Dimensione 6.89 MB
Formato Adobe PDF
6.89 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1278746
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact