Super-Bloch oscillations (SBOs) are amplified versions of direct current (dc)-driving Bloch oscillations realized under the detuned dc- and alternating current (ac)-driving electric fields. A unique feature of SBOs is the coherent oscillation inhibition via the ac-driving renormalization effect, which is dubbed as the collapse of SBOs. However, previous experimental studies on SBOs have only been limited to the weak ac-driving regime, and the collapse of SBOs has not been observed. Here, by harnessing a synthetic temporal lattice in fiber-loop systems, we push the ac-field into a strong-driving regime and observe the collapse of SBOs, which manifests as the oscillation-trajectory localization at specific ac-driving amplitudes and oscillation-direction flip by crossing collapse points. By adopting arbitrary-wave ac-driving fields, we also realize generalized SBOs with engineered collapse conditions. Finally, we exploit the oscillation-direction flip features to design tunable temporal beam routers and splitters. We initiate and demonstrate the collapse of SBOs, which may feature applications in coherent wave localization control for optical communications and signal processing.

Observing the collapse of super-Bloch oscillations in strong-driving photonic temporal lattices

Longhi, Stefano;
2024-01-01

Abstract

Super-Bloch oscillations (SBOs) are amplified versions of direct current (dc)-driving Bloch oscillations realized under the detuned dc- and alternating current (ac)-driving electric fields. A unique feature of SBOs is the coherent oscillation inhibition via the ac-driving renormalization effect, which is dubbed as the collapse of SBOs. However, previous experimental studies on SBOs have only been limited to the weak ac-driving regime, and the collapse of SBOs has not been observed. Here, by harnessing a synthetic temporal lattice in fiber-loop systems, we push the ac-field into a strong-driving regime and observe the collapse of SBOs, which manifests as the oscillation-trajectory localization at specific ac-driving amplitudes and oscillation-direction flip by crossing collapse points. By adopting arbitrary-wave ac-driving fields, we also realize generalized SBOs with engineered collapse conditions. Finally, we exploit the oscillation-direction flip features to design tunable temporal beam routers and splitters. We initiate and demonstrate the collapse of SBOs, which may feature applications in coherent wave localization control for optical communications and signal processing.
2024
super-Bloch oscillations
band collapse
ac-driving renormalization effect
photonic temporal lattices
strong-driving regime
File in questo prodotto:
File Dimensione Formato  
434_2024_Advanced Photonics.pdf

accesso aperto

: Publisher’s version
Dimensione 5.47 MB
Formato Adobe PDF
5.47 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1278209
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact