Experimental demonstration of tunable temporal Goos-H & auml;nchen shift (GHS) in synthetic discrete-time heterolattices with scalar and vector gauge potentials is reported. By using Heaviside-function modulation in two fiber loops, we create a sharp gauge-potential interface and observe temporal GHS for total internal reflection (TIR), which manifests as a time delay rather than a spatial shift. The TIR occurs as the incident mode falls into the band gap of transmitted region with band shifting by scalar and vector potential. We find that both scalar and vector potential codetermine GHS by controlling the decay (imaginary part) and oscillation (real part) of a penetrated evanescent wave, in stark contrast to traditional spatial GHS only determined by the decay factor. We also observe diverging characteristics of GHS at band-gap edges where evanescent-to-propagating wave transition occurs. GHS for frustrated total internal reflection (FTIR) by a finite-width evanescent barrier is also demonstrated, which shows saturation properties to the singleinterface TIR case under infinite-width limit. Finally, we develop an accumulation measurement method using multiple TIRs to improve the precision for measuring even tinier GHS. The study initiates precise measurement of temporal GHS for discrete-time reflections, which may feature potential applications in precise time-delay control and measurement.

Temporal Goos-Hänchen Shift in Synthetic Discrete-Time Heterolattices

Longhi, Stefano;
2024-01-01

Abstract

Experimental demonstration of tunable temporal Goos-H & auml;nchen shift (GHS) in synthetic discrete-time heterolattices with scalar and vector gauge potentials is reported. By using Heaviside-function modulation in two fiber loops, we create a sharp gauge-potential interface and observe temporal GHS for total internal reflection (TIR), which manifests as a time delay rather than a spatial shift. The TIR occurs as the incident mode falls into the band gap of transmitted region with band shifting by scalar and vector potential. We find that both scalar and vector potential codetermine GHS by controlling the decay (imaginary part) and oscillation (real part) of a penetrated evanescent wave, in stark contrast to traditional spatial GHS only determined by the decay factor. We also observe diverging characteristics of GHS at band-gap edges where evanescent-to-propagating wave transition occurs. GHS for frustrated total internal reflection (FTIR) by a finite-width evanescent barrier is also demonstrated, which shows saturation properties to the singleinterface TIR case under infinite-width limit. Finally, we develop an accumulation measurement method using multiple TIRs to improve the precision for measuring even tinier GHS. The study initiates precise measurement of temporal GHS for discrete-time reflections, which may feature potential applications in precise time-delay control and measurement.
2024
File in questo prodotto:
File Dimensione Formato  
435_2024_PRL.pdf

Accesso riservato

: Publisher’s version
Dimensione 1.89 MB
Formato Adobe PDF
1.89 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1278208
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact