A novel approach of Metal Additive Manufacturing using Powder Sheet (MAPS) is developed and demonstrated. A flexible metal particle-polymeric binder composite sheet is employed as innovative feedstock in this new method and this approach offers enhanced health and safety. MAPS successfully printed dense samples (99.99%). The chemical composition of the printed alloy resulted enriched in carbon compared to the feedstock powder due to the C pick-up during MAPS, leading to distinct microstructures and enhanced mechanical properties compared to those of laser beam powder bed fusion (PBF-LB/M) benchmark samples. In particular, the microstructural examinations of the MAPS samples show a coarser carbide network stable even after thermal treatment at high temperatures, while the tensile tests revealed that MAPS samples have a higher mechanical strength than the PBF-LB/M counterparts but possess lower ductility. The modification in the chemical composition indicates a strong potential for in-process alloying through MAPS. The demonstrated MAPS approach offers a novel avenue for manufacturing functional metal components with bespoke compositions and resulting properties.
Demonstration and benchmarking of a novel powder sheet additive manufacturing approach with austenitic steel
Marola, Silvia;Casati, Riccardo;
2024-01-01
Abstract
A novel approach of Metal Additive Manufacturing using Powder Sheet (MAPS) is developed and demonstrated. A flexible metal particle-polymeric binder composite sheet is employed as innovative feedstock in this new method and this approach offers enhanced health and safety. MAPS successfully printed dense samples (99.99%). The chemical composition of the printed alloy resulted enriched in carbon compared to the feedstock powder due to the C pick-up during MAPS, leading to distinct microstructures and enhanced mechanical properties compared to those of laser beam powder bed fusion (PBF-LB/M) benchmark samples. In particular, the microstructural examinations of the MAPS samples show a coarser carbide network stable even after thermal treatment at high temperatures, while the tensile tests revealed that MAPS samples have a higher mechanical strength than the PBF-LB/M counterparts but possess lower ductility. The modification in the chemical composition indicates a strong potential for in-process alloying through MAPS. The demonstrated MAPS approach offers a novel avenue for manufacturing functional metal components with bespoke compositions and resulting properties.File | Dimensione | Formato | |
---|---|---|---|
2024 - Zhang - Demonstration and benchmarking of a novel powder sheet additive.pdf
accesso aperto
Descrizione: Full paper
:
Publisher’s version
Dimensione
11.71 MB
Formato
Adobe PDF
|
11.71 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.