Unidirectional long fiber reinforced polymers generally exhibit unfavorable abrupt and brittle failure under mechanical stresses without pre-warning which currently limits their use in safety critical applications. The lack of ductility of such composites can be overcome by interlayer hybridization where Low Strain (LS) material is sandwiched between High Strain (HS) material. This results in complex failure mechanisms, including multiple interacting damage modes, such as ply fragmentation and delamination. All-carbon unidirectional hybrid laminates with different layup sequences were designed and manufactured to study the pseudo-ductile behavior. An available analytical model was exploited to predict the damage scenarios of the laminates, both with stress-strain diagrams and damage mode maps. Tensile tests were carried out using different measurement and observation techniques including digital image correlation (DIC), embedded distributed fiber optic sensors (dFOS) and helicoidal X-ray computed tomography (CT). A finite element model was also developed to predict the damage mechanisms. Validated by experimental results, the numerical model was found to accurately predict the tensile damage modes and their evolution in the considered unidirectional thick ply all-carbon hybrid laminates.

Tensile behavior of unidirectional thick-Ply all-carbon hybrid laminates: a systematic experimental and numerical study

Carvelli, Valter;
2024-01-01

Abstract

Unidirectional long fiber reinforced polymers generally exhibit unfavorable abrupt and brittle failure under mechanical stresses without pre-warning which currently limits their use in safety critical applications. The lack of ductility of such composites can be overcome by interlayer hybridization where Low Strain (LS) material is sandwiched between High Strain (HS) material. This results in complex failure mechanisms, including multiple interacting damage modes, such as ply fragmentation and delamination. All-carbon unidirectional hybrid laminates with different layup sequences were designed and manufactured to study the pseudo-ductile behavior. An available analytical model was exploited to predict the damage scenarios of the laminates, both with stress-strain diagrams and damage mode maps. Tensile tests were carried out using different measurement and observation techniques including digital image correlation (DIC), embedded distributed fiber optic sensors (dFOS) and helicoidal X-ray computed tomography (CT). A finite element model was also developed to predict the damage mechanisms. Validated by experimental results, the numerical model was found to accurately predict the tensile damage modes and their evolution in the considered unidirectional thick ply all-carbon hybrid laminates.
2024
Ud hybrid laminates
Carbon fibers
Experimental tensile test
Distributed fiber optic sensing
Analytical model
Finite element model
File in questo prodotto:
File Dimensione Formato  
Carvelli_Composites Part C_2024.pdf

Accesso riservato

Descrizione: Carvelli_Composites Part C_2024
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 3.49 MB
Formato Adobe PDF
3.49 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1277447
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact